
Calculating Frobenius Numbers with Boolean Toeplitz
Matrix Multiplication

For Dr. Cull, CS 523, March 17, 2009

Christopher Bogart
bogart@eecs.oregonstate.edu

ABSTRACT
I consider a class of algorithms that solve the Frobenius
problem in terms of matrix index of primitivity. I discuss
space tradeoffs in representation of the input numbers to
the problem, which can be O(an) or O(n log an); the O(an)
encoding is more efficient and leads to a lower complexity so-
lution for high n and low an. I argue complexity bounds for
index of primitivity based on its relationship with Frobenius.
I conjecture that powers of Boolean Minimal Frobenius ma-
trices are always Toeplitz matrices, and give an O(n2 logn)
index of primitivity algorithm that depends on that assump-
tion. I give empirical evidence for the conjecture, but no
proof. Finally, I discuss another matrix representation that
I considered, and rejected, for faster index of primitivity
calculations.

1. INTRODUCTION
In his lectures, the German mathematician Ferdinand Georg
Frobenius (1849-1917) used to raise the following problem,
which is named after him, although he never published any-
thing on it [1]:

Given a list of distinct positive integers, a1 . . . an, such that
gcd(a1 . . . an) = 1, what is the highest integer that cannot be
represented as a sum of integer multiples of these numbers?

The Frobenius problem is also known as the“coin problem”.1

For example, if a monetary system only had a nickel and a
“trime” (a three-cent piece), it would be impossible to make
change of 1, 2, 4, or 7 cents. Above that, all combinations
would be possible. So we call 7 the Frobenius number of the
sequence (3,5).

The Frobenius problem is related to the Index of Primitiv-
ity of a matrix: given a square matrix A with nonnegative
entries, what is the lowest number k such that Ak >> 0, i.e.
where all entries in Ak are positive?

Alfonśın [6] proved that the Frobenius problem was NP-
complete, by reducing it to the Integer Knapsack Problem.

Given that the Frobenius problem is known to be NP-hard,

1The “postage stamp problem” is like the coin problem, but
adds an extra constraint of a maximum number of stamps
that will fit on an envelope.

and that it can be solved by way of the index of primitivity,
my goal was to see what complexity bounds that implied for
the index of primitivity problem.

2. PREVIOUS WORK
Heap and Lynn [4] described an algorithm for the index of
primitivity, shown in Figure 1.

INDEX-OF-PRIMITIVITY(m: matrix of size n x n)

Create an array A of matrices

k = 1

A(1) = m

for j = 2 to (n-1)^2+1

A(j) = A(j-1)*m

if (A(j) >> 0) then exit loop

k = j-1

B = A(k)

for j = j-1 downto 1

if not(answer*A(j) >> 0)

answer = answer * A(j)

k = k + j

return k

Figure 1: Index of Primitivity Algorithm takes a
matrix m of size as an argument.

Alfonśın [1] is a good starting point for anything having to do
with the Frobenius problem. He explains Heap and Lynn’s
proof [5] of the relationship between the Frobenius number
and the index of primitivity:

g(a1, a2, . . . , an) = γ(B)− an

where a1 through an are the coin sizes in the Frobenius
problem, and B̄ is graph specially constructed from them.
γ(B) is the index of primitivity, and g(a1 . . . an) is the Frobe-
nius number. The graph B̄ they call the Minimal Frobenius
graph, and it is formally defined in the Definitions section
below.

Figure 2 shows Heap and Lynn’s algorithm for calculating
the Frobenius number, which comes immediately from that
equation.

1



CALC-FROBENIUS(A1,A2,...AN):

CONSTRUCT A MINIMAL FROBENIUS MATRIX B from A1...AN

GAMMA = INDEX-OF-PRIMITIVITY(B)

RETURN GAMMA-AN

Figure 2: Heap and Lynn’s Frobenius number algo-
rithm

3. DEFINITIONS
I am using Alfonśın’s notation [1] of g(a1, a2 . . . an) as the
Frobenius number of a list of integers, and γ(A) as the index
of primitivity of a matrix A.

Given a list of integers a1 through an, I will use the term a
Coin Matrix to be one whose entries are defined as:

ci,j =

8><>:
1 if j − i = 1

1 if j = 0 and i = ak for any k,

0 otherwise

For example, for the nickel-trime system (n = 2, a1 = 3,
a2 = 5), the coin matrix is:

0BBB@
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1
1 0 0 0 0

1CCCA
Notice that this is a special case of a transposed Leslie matrix
[2]. The corresponding coin graph is:

I will use the term minimal Frobenius matrix to be one as
described in [5] where:

ci,j =

8><>:
1 if j − i = 1

1 i− j = ak − 1 for all ak

0 otherwise

The minimal Frobenius matrix for (3,5) is:0BBB@
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 1 0 0 1
1 0 1 0 0

1CCCA
Notice that the matrix is a Boolean Toeplitz matrix, and it

has all zeroes above the superdiagonal.

and the minimal Frobenius graph is:

4. ENCODING THE PROBLEM
Consider the most space-efficient data structure for repre-
senting a list of distinct positive integers. Assume the num-
bers a1 through an are sorted, so that an is the largest. We
can represent this list in exactly an bits, by representing
the whole list as a single string of an bits, where the ith

bit indicates whether i is in the list. So the (3,5) system
would be represented as five bits: “00101”. I will refer to
this henceforth as bit-list encoding.

A more efficient representation might be to use k = dlog2 ane,
bits to represent each number. I will call this number-list
encoding. But this is only more space efficient when the
numbers are fairly sparse, specifically when

k ∗ n < an

n <
an

dlog2 ane

Our (3,5) problem would be represented as six bits,“011101”,
assuming we knew that each number would take exactly
three bits.

So, for example, if an = 100, we need 7 bits to represent
each number, and our whole list exceeds 100 bits if there
are 15 or more numbers.

5. TIME COMPLEXITY BOUNDS
We would like to show that if the index of primitivity calcu-
lation is O(E), that the Frobenius problem is subexponential
in the number of bits used to express it. But what would
that entail?

Algorithm 2 requires building an an × an matrix. We have
two options to consider: bit-list encoding and number-list
encoding.

For number-list encoding, it takes b = dlog2 ane) bits to rep-
resent an. (The problem itself will take ndlog2 ane to repre-
sent, but only the bits for an figure into the algorithm’s space
and time complexity). Creating a Boolean matrix from this
number requires an × an entries in the matrix, with one bit

each. Since an = 2b, it will take 2b2 or 4b bits to represent
the matrix, and therefore at least O(4b) time.

For large n relative to an, as mentioned before, it is more
efficient to use bit-list encoding. If we do things this way,

2



there will be one graph node per bit, so the space and time
will be O(b2).

Now suppose we had an O(E) algorithm for the index of
primitivity of a Coin matrix. We know the number of edges
in this Coin graph must be at least n, and less than 2n, so
O(E) = O(n).

Of course with the number-list encoding, this speedy algo-
rithm would not help: solving the problem would still take
O(4b + cb) time, no better asymptotically than O(4b). No
matter how fast the index of primitivity algorithm is, it can-
not get past the exponential hurdle in coding up the matrix.
Because of this, the known NP-hard status of the Frobenius
problem places no constraints on the complexity of index of
primitivity.

However with the second coding scheme, the complexity of
the index of primitivity the algorithm starts to matter. If
it takes O(b2) time to create the matrix, and O(b) time to
calculate the index of primitivity, that puts us at O(b2).

Lamentably, we do not know of an O(E) algorithm for the
index of primitivity. Heap and Lynn’s algorithm in Figure
1 takes O(n3 logn). Since the n here is the same as b in
bit-list encoding, this part of the calculation dominates the
complexity, and we have O(b3 log b). Thus the Frobenius
problem is not NP-hard under bit-list encoding.

6. USING TOEPLITZ MATRICES
A minimal Frobenius matrix is a Toeplitz matrix. Since a
Toeplitz matrix has fewer degrees of freedom than an ar-
bitrary matrix, there are algorithmic speedups available for
operations on them.

Unfortunately the product of two Toeplitz matrices is not
necessarily another Toeplitz matrix, and the square or power
of a Toeplitz matrix may not be a Toeplitz matrix.

However, I conjecture that all integer powers of minimal
Frobenius matrices are Toeplitz matrices. I have not been
able to prove this, but by exhaustive software search, I have
ruled out coin problems under n ≤ 10 and an ≤ 10 and
exponents k ≤ 30.

I have found some facts that would seem to bear on this
issue, but they do not yet add up to a proof:

• Powers of Minimal Frobenius matrices are only“Toeplitz”
in the Boolean sense: their zeroes all line up diagonally.
The positive numbers are not the same along diago-
nals, but we do not care about the particular non-zero
values for the purposes of index of primitivity calcula-
tions, and therefore for Frobenius calculation.

• Minimal Frobenius matrices have all zeroes above the
upper superdiagonal, and from my experiments with
various Toeplitz matrices, it appears to be the case
that the Toeplitz matrices which are not closed under
exponentiation, seem to be the ones that do not share
this property.

• Circulant matrices are a sublass of Toeplitz matrix

that are known to be closed under multiplication, un-
like Toeplitz matrices [3]. Minimal Frobenius matrices
are not circulant, however. My intuition was that they
would work just as well for the representation of the
Frobenius problem, but it turned out not to be the
case, at least without making any other modifications
to the algorithm.

• Multiplying two Minimal Frobenius matrices does not
necessarily result in a Toeplitz matrix. Multiplying
two powers of a particular minimal Frobenius matrix,
however, does seem to.

It is risky to build an algorithm based on an unproven con-
jecture, but using this technique as part of the algorithm to
calculate Frobenius numbers for the large problems cited by
Heap and Lynn [5] gives the same results. So the conjecture
seems sound, if unproven.

The time benefits are clear from the algorithm in the figure
below: two Minimal Frobenius matrices can be multiplied in
O(n2) time. Getting the index of primitivity takes O(logn)
matrix multiplications for an n×n matrix, which means we
can reduce the index of primitivity calculation down from
O(n3 logn) to O(n2 logn). Here is an algorithm for multi-
plying two minimal Frobenius matrices. It assumes they are
stored as one-dimensional arrays indexed from −n to n:

MIN-FROB-MAT-MULT(A, B):

Create a new matrix C, with all entries=0

For R from 0 to N

For I from 0 to N-1

C(-R) = A(-I)*B(I-R)

For R from 1 to N

For I from 0 to N-1

C(R) = A(R-I)*B(I)

Return C

Figure 3: O(n2) Matrix multiplication algorithm for
use in exponentiation of minimal Frobenius matrices

Turning this matrix multiplication algorithm into an in-
dex of primitivity algorithm follows by simply replacing the
O(n3) matrix multiply in Figure 1

Both loops execute in O(log((n − 1)2 + 1)) = O(logn2) =
O(logn). If the matrix multiply takes O(n3), then the algo-
rithm overall is O(n3 logn).

However for the particular case of the Frobenius problem
where we can use the more specialized matrix multiplica-
tion, the index of primitivity algorithm becomes O(n2 logn).
Put together with the construction of the matrix, we have
either O(4b log 2b) = O(b 4b) for number-list encoding, or
O(b2 log b) for bit-list encoding.

Another speedup is possible as well. Because these are
boolean matrices, with no subtraction, we can short-circuit
the dot product calculation in the center of the double loop,

3



as soon as we encounter a non-zero product. In the best case,
this makes Toeplitz multiplication O(n); in the worst case, it
does not save multiplications, but in fact adds comparisons.
Assuming a boolean comparison is about the same cost as a
boolean multiply, this only really doubles the cost, so there
is no asymptotic harm. As I will show below, however, this
speedup did not turn out to be of practical importance.

7. EMPIRICAL RESULTS
Table 1 is a speed comparison with the problems Heap and
Lynn [5] tried their algorithm on. Because I have run this
algorithm on faster hardware (the Heap and Lynn article
is dated 1965), the column of interest is the Ratio, repre-
senting how much faster this calculation ran on my 2Ghz
Intel MacBook than on their “English Electric-Leo KDF 9
computer”. What the ratio column demonstrates is that the
problems with larger maximum denominations also show a
faster speedup, indicating that I have improved somewhat
on their algorithm in terms of complexity.

n Coins g Heap/
Lynn
[5]

Bogart Ratio

4 140, 141, 144,
145

3919 102 8.93 11.4

6 130, 135, 140,
141, 144, 145

1452 84 7.51 11.2

8 120, 125, 130,
135, 140, 142,
144, 145

883 78 6.05 12.9

3 137, 251, 256 4948 348 22.11 15.7
10 239, 241, 251,

257, 263, 269,
271, 277, 281,
283

2866 390 27.43 14.2

4 271, 277, 281,
283

13022 510 36.54 14.0

Table 1: Runtimes (seconds) for various Frobenius
problems: Common Lisp on a 2GHz MacBook vs.
the ”English Electric-Leo KDF 9”. Column g is the
Frobenius number

It is hard to compare the time complexity of index of primi-
tivity for different problem sizes, since the number of calcula-
tions is highly problem-dependent. So in addition the table
above, I decided to verify the time complexity of divide-
and-conquer matrix exponentiation using three tecnhiques
below.

While taking advantage of the Toeplitz property of the ma-
trices was helpful, the short-circuited dot products did not
help dramatically. Figure 2 shows the results of running
matrix exponentiations with each of the three algorithms.
Since I was not doing anything to improve the number of
matrix multiplications involved, the comparison is between
the same power, but comparing between different sized ma-
trices. I chose to raise them to the 511th power since this
involves 16 matrix multiplications. The matrices were fairly
sparse: they were constructed as minimal Frobenius graphs
for two coins: (3,n) (which isn’t a valid problem for 30, 60,
and 90, but that should not affect the complexity of the
exponentiation step).

n power Full Toeplitz
Short-
cut

Toeplitz

10 511 .10 .03 .04
20 511 .67 .10 .15
30 511 2.09 .32 .26
40 511 5.13 .40 .52
50 511 9.90 .66 .81
60 511 16.27 1.32 .99
70 511 - 1.36 1.49
80 511 - 1.82 1.91
90 511 - 3.00 2.17
100 511 - 2.98 2.89

Table 2: Timing for matrix exponentiation with var-
ious algorithms. All require 16 matrix multiplica-
tions. “Full” uses a standard O(n2) representation of
a matrix; “Toeplitz” uses a 1-d matrix of size 2n+ 1
to represent them, and “Toeplitz shortcut” cuts off
dot product calculations as soon as a non-zero result
is acheived.

Table 2 and Figure 4 show the results, and demonstrate that
the short-cut technique hurts as often as it helps, at least in
the cases I ran.

The linearity of the graph on a log-log scale demonstrates
that both algorithms are polynomial in n.

The Full line has a slope here of (log 16.27− log .1)/(log 60−
log 10) = 2.8, implying a complexity of O(n2.8); a little less
than the expected comlexity of O(n3) for matrix multiplica-
tion.

The Toeplitz line has a slope of (log 2.89−log .04)/(log 100−
log 10) = 1.86 implying a complexity of O(n1.86); a little less
than the expected complexity of O(n2) for this algorithm.

The shortcut line is too irregular to extract a meaningful
slope out of it, at least compared with the non-shortcut
Toeplitz line.

8. RELATIONSHIP BETWEEN N AND G
One factor that weighs in the choice of encoding scheme is
the fact that perhaps the Frobenius problem is more diffi-
cult for smaller n. Given a highest coin denomination, the
Frobenius number, g, generally varies inversely with the to-
tal number of denominations available, n.

One would hope that g strictly decreased as a function of n.
This would give us some hope that by limiting the number
of edges in the Frobenius graph, we could limit the size of g,
and perhaps be able to find it faster. However this turns out
not to be the case. I found counterexamples even for quite
small problems. For example the n = 3 problem of (7,6,3)
has a Frobenius number of 11, but a smaller n = 2 problem
of (7,2), with the same highest coin, has a Frobenius number
of only 5.

However, on the whole we can still say that small values
of n make for more difficult Frobenius problems, and that
therefore the number-list encoding (for which the Frobenius

4



Figure 4: Matrix Exponentiation times, log-log scale

problem is NP-hard) is the more interesting one to consider.

9. LAZY MATRIX SQUARING
In this section I describe an earlier attempt to speed up the
Index of Primitivity algorithm.

I originally started working with Coin matrices, and it seemed
like a lot of extra work, taking O(n3) time to square these
matrices which, after all, are very sparse. That suggested
an opportunity for speedup.

Is there a faster way to square a matrix, if it is sparse?
Suppose we represent an n × n boolean matrix as a kind
of double adjacency list: for each of the n rows we store a
sorted list of columns that contain a 1, and for each of the
n columns we store a list of the rows that contain a 1.

Given:

M.COLS[i] = {cols with 1 in row i}

M.ROWS[i] = {rows with 1 in col i}

And starting with empty:

SQ.COLS[]

SQ.ROWS[]

For i = 1 to N

For every possible pair (M.COLS[i][j],M.ROWS[i][k])

Add j to SQ.ROWS[i]

Add k to SQ.COLS[i]

Figure 5: Sparse Boolean Matrix Multiplication

Suppose we call a matrix with no more than q nonzero en-
tries in any row or column a “degree-q matrix”. Then for an
n×n degree-q matrix, this algorithm should takeO(n) = nq2

operations to square the matrix.

A Leslie or a Coin matrix are degree 2, so they can be
squared in O(n) operations.

But to calculate the index of primitivity, the squaring has
to continue up until the point where there are no zeroes. If
there are no zeroes, q = n, and the algorithm is O(n3).

Does it save any time in the aggregate? Squaring a matrix
will at worst results in a matrix of degree q2, and at best a
matrix of degree q. If we supposed that squaring repeatedly
over the course of finding the index of primitivity increased
the degree linearly with each squaring, then on average q =
n/2, resulting in an average O(n3/4) = O(n3). This is no
improvement.

10. CONCLUSIONS
I have discussed some tradeoffs in the coding of the Frobe-
nius problem. The tradeoffs are a bit academic, in that two
representations of similar length can lead to exponential or
low polynomial complexity for the same problem. To come
up with a useful answer to the question of the complexity of
these problems, one would have to ask to what types of large
numbers would we like to apply them for some application:
large numbers of coins, or large denominations of coins.

I have shown that Heap and Lynn’s algorithm can be sped
up by the observation that the matrices involved in their

5



index of primitivity calculations are of a variety that can be
multiplied in O(n2) instead of O(n3) time.

While I improved on the speed of Heap and Lynn’s Frobenius
algorithm, I did not actually prove it correct. One route to
doing this may simply be to find a reformulation in terms
of a circulant matrix; but a reformulation, if it exists is not
obvious. The other route would be to prove my conjecture
about powers of minimal Frobenius matrices.

11. REFERENCES
[1] Jorge L. Ramı́rez Alfonśın. The Diophantine Frobenius

Problem. 2005.

[2] Paul Cull, Mary E. Flahive, Robby Robson, and
Robert O. Robson. Difference Equations. 2005.

[3] R. M. Gray. Toeplitz and circulant matrices: A review,
volume 2, Issue 3, pages 155–239. Now Publishers Inc,
2006. [Online]
http://ee.stanford.edu/˜gray/toeplitz.pdf [Accessed:
March 16, 2009].

[4] B. R. Heap and M. S. Lynn. A graph-theoretic
algorithm for the solution of a linear diophantine
problem of frobenius. Numerische Mathematik,
6(1):346–354, December 1964.

[5] B. R. Heap and M. S. Lynn. On a linear diophantine
problem of frobenius: an improved algorithm.
Numerische Mathematik, 7(3):226–231, June 1965.

[6] J. L. Ramı́rez-Alfonśın. Complexity of the frobenius
problem. Combinatorica, 16(1):143–147, March 1996.

12. APPENDIX
The code used to explore these questions and to test the
algorithm is available online at:

http://engr.oregonstate.edu/˜bogart/frobenius.html

6


