

Designing a Debugging Interaction Language:
An Initial Case Study in Natural Programming Plus

Christopher Bogart1, Margaret Burnett1, Scott Douglass2, Rachel White1, Hannah Adams1
1Oregon State University
Corvallis, Oregon 97331 USA

2Air Force Research Laboratory

Dayton, OH 45433 USA

{bogart, burnett, white, adamshan}@eecs.oregonstate.edu, Scott.Douglass@wpafb.af.mil

ABSTRACT

In this paper, we investigate how a debugging environment

should support a population doing work at the core of HCI

research: cognitive modelers. In conducting this investiga-

tion, we extended the Natural Programming methodology (a

user-centered design method for HCI researchers of pro-

gramming environments), to add an explicit method for

mapping the outcomes of NP‘s empirical investigations to a

language design. This provided us with a concrete way to

make the design leap from empirical assessment of users‘

needs to a language. The contributions of our work are

therefore: (1) empirical evidence about the content and se-
quence of cognitive modelers‘ information needs when de-

bugging, (2) a new, empirically derived, design specifica-

tion for a debugging interaction language for cognitive

modelers, and (3) an initial case study of our ―Natural Pro-

gramming Plus‖ methodology.

Author Keywords

Natural Programming; Evaluation Abstraction; Cognitive

Model; End-user software engineering

ACM Classification Keywords

D.2.5 [Software Engineering]: Testing and Debugging;

H.1.2 [Information Systems]: User/Machine Systems—

Human Factors

General Terms

Experimentation

INTRODUCTION

Although the needs of both professional and end-user pro-

grammers have become popular topics in HCI research, the

HCI needs of people who program in order to build scientif-

ic models have received relatively little attention—

especially in the realm of debugging. Tools and languages

exist to enable them to write programs, but relatively little
research investigates how to support them in the debugging

phase of programming.

A population of modelers in the very core of HCI research

is cognitive psychologists working with cognitive models.

Cognitive models have contributed important foundations

to HCI, such as GOMS, information foraging theory, and

cognitive tutoring (e.g., [1, 6, 8, 15, 18]). A few practical

tools for modeling have emerged from the modeling com-

munity itself (e.g. [20]), but HCI research into how to sup-

port the population doing this important work is sparse.

This paper aims to help fill this gap.

We believe that cognitive modelers mentally construct

evaluation abstractions—abstractions they work with when

evaluating a model‘s runtime behaviors [3]. These abstrac-

tions range from simple reflections of a model‘s internal

data structures (e.g., content of simulated short-term memo-
ry as a model runs), to much more complex abstractions

(e.g., some particular recurring pattern of short-term memo-

ry changes). When modelers‘ abstractions do not coincide

with the model‘s internal data structures, today‘s debugging

tools do not support them well.

To overcome this lack of support, cognitive modelers some-

times write separate programs just to debug their models.

Modelers use these secondary programs to examine their

models‘ (i.e. primary programs’) logs and outputs, to un-

derstand, debug, and validate the model‘s behavior. [3, 19].

The abstractions captured by these secondary programs are
often the same abstractions that modelers verbalize as in-

formation goals while debugging [3], so we set out to de-

sign a useful design specification for an interactive ―debug-

ging language‖ that would support both kinds of evaluation

abstractions – one-off debugging questions and persistent

secondary programs – within a single unified tool.

To accomplish this, we needed to choose a methodology to

investigate the constructs, relationships, and interaction

sequences that modelers used to assess and fix model beha-

vior, at a finer-grained level of detail than previous work

[3]. We were faced with the choice between a task analysis,

(appropriate for interactivity, and for one-off debugging
questions) and a language design methodology (appropriate

for the secondary programs described above). Since mod-

elers‘ information queries in both areas seemed to have a

complex internal structure, we chose to adapt a program-

ming language design methodology: Natural Programming.

Natural Programming [17] is a user-centered design ap-

proach in which researchers observe how people try to na-

turally express programming intentions, and use these ob-

servations to devise programming tools whose conceptual

models fit as closely as possible to the participants‘ expres-

sions. This technique was first introduced to design the
children‘s programming language Hands [16]. It has since

Copyright 2012 Association for Computing Machinery. ACM acknowledg-

es that this contribution was authored or co-authored by an employee, con-

tractor or affiliate of the U.S. Government. As such, the Government retains

a nonexclusive, royalty-free right to publish or reproduce this article, or to

allow others to do so, for Government purposes only.

CHI '12, May 05 - 10 2012, Austin, Texas, USA

Copyright 2012 ACM 978-1-4503-1015-4/12/05…$10.00.

been used to design numerous tools that support program-

ming, scripting, and debugging (e.g., [11, 13, 14, 21]). The

Natural Programming methodology, however, leaves impli-

cit exactly how designers should connect their empirical

observations of people to a new language that can serve

those people well.

Therefore, for this work we extended NP (henceforth,

―Natural Programming Plus‖ or NP+), by adding new steps

for precisely and accountably treating interactive sequences

of naturally expressed verbal ―programs‖ and their results

(in our case, modeler‘s evaluation abstractions) as cases of

a language specification. This precision helped us by pro-

viding both scaffolding for our effort to design an interac-

tive debugging language based on empirical evidence, and

ongoing analytical measures of how well the emerging lan-

guage matched that evidence.

The contributions of this paper are:

 Empirical evidence about the evaluation abstractions
requested by cognitive modelers, and how those ab-

stractions were sequenced over time.

 An empirically derived and validated design specifica-

tion for a debugging interaction language for cognitive

modelers.

 An initial case study of Natural Programming Plus, an

extension of the Natural Programming methodology to

more precisely capture and validate the structure and

flow of ideas expressed by the participants.

The first two contributions also serve as initial data points

towards an understanding of the potential of NP+ as a me-
thodology of wider interest, a prospect which we will dis-

cuss at the end of this paper.

METHODOLOGY

In this section we present our methodology at a high level.

The remaining sections then illustrate how we used it.

Pane and Myers [17] defined the Natural Programming

methodology as four steps (applied iteratively, as needed):

A. Identify the target audience and domain

B. Understand the target audience

C. Design the new system (e.g., a language or pro-

gramming tool‘s interaction language)

D. Evaluate the new system

We expanded on Step B to provide a process for designing

and validating a specification of the new language. The

essence of our process was to use a pipeline of two experi-
ments, which together allowed refining the results to derive

a precise specification, and finally empirically validating

three properties of the derived specification. Thus, as Figure

1 summarizes, we replaced Step B with the following four

steps:

Step B1/Formative: As is implied by the original Natural

Programming process, we conducted a formative study (see

Study N, below) to harvest the constructs and relationships

that modelers used to describe what they were looking for

when debugging. B1‘s results are the constructs and rela-

tionships the participants used. Why: These constructs and

relationships are the basis of a software tool for administer-
ing the experiment in B2.

Step B2/Wizard: We performed a Wizard of Oz study (see

Study W, below), using a query tool in which the constructs

and relationships of B1 were supported, but without a con-

crete syntax or GUI yet. Participants were asked to seek

information similar to queries observed in the course of

B1‘s tasks, by asking the experimenter (Wizard) who would

manually query the results and show the participant a table

of the results. The results of this step were (1) any con-

structs and relationships missed or misunderstood in B1,

and (2) the way participants naturally sequenced their inte-
ractions in response to the feedback of executing each

query. Why: This step revealed how modelers responded

when the capabilities derived from B1 actually executed. It

also allowed us to validate the B1 results with the target

audience itself.

Step B3/Derive a precise specification: We refined the re-

sults of B1 and B2 into a language specification. When

possible, we structured the specification such that small

differences from one user request to the next were mirrored

by small differences in the language used to represent mod-

elers‘ queries. Why: The language specification is a precise

form of ―Implications
for Design‖. Because

it is precise, it was

auditable, and this

facilitated evaluation

and kept us accounta-

ble.

Step B4/Validation:

We measured cover-

age of the language

specification (how

many of B2‘s requests
it could execute), its

soundness (correct-

Figure 1: Natural Programming Plus replaces NP’s Step B with Steps B1-B4. Arrows show what results

feed from one step to the next. The “Language” from step C to D may mean an interaction language or

programming tool, not necessarily a programming language.

ness, i.e., the responses it did produce are what the partici-

pants asked for, in the context of the available data), and its

viscosity (the effort required in the new language as speci-

fied to change from one request to the next, if the requests

were related.)

The rest of this paper shows how we applied Steps B1-B4
of NP+ to the problem of designing a debugging interaction

language for cognitive modelers.

OUR POPULATION: COGNITIVE MODELERS

Cognitive modelers try to model cognitive functioning of

the human mind. They often have backgrounds in psychol-

ogy or linguistics; some also have backgrounds in computer

science, but many do not (as our empirical data in later sec-

tions will show). To build their models, they sometimes use

rule-based languages specifically designed for cognitive

modeling, such as ACT-R, and ACT-R provided the context

for our investigation. ACT-R is both a theory of human

cognition, and a simulation language that implements the

theory. In ACT-R, modelers specify rules that move

―chunks‖ of information among cognitive subsystems such
as vision, memory, goal, and motor modules. The chunk is

ACT-R‘s primary data structure, which consists of a vary-

ing number of named slots, and simulates a grouping of

mental information in short-term memory (buffers) or long-

term (declarative) memory. ACT-R builds in current as-

sumptions from the cognitive science community about

how these subsystems work.

A common task of cognitive modelers is to simulate a hu-

man subject participating in a psychological experiment. In

the simulated experiments, the modeler manipulates some-

thing and the model (i.e., the simulated human) responds.
This stimulus/response pattern happens multiple times, and

each instance is called a trial. Yaremko et. al. define a trial

as ―a single instance or event from which a datum is col-

lected‖ [22].

Time passes during a trial, and many events may occur be-

tween the stimulus and response. Data that could in prin-

ciple be collected about a single trial include things such as:

a start and end time as per a simulation clock, the timing

and attributes of stimuli presented and responses observed,

and the timing and attributes of the model‘s (simulated hu-

man's) internal mental events. Thus, trials are composed of

data, some or all of which a cognitive modeler may find
interesting when evaluating or debugging a model.

STEPS B1-B2: TWO EMPIRICAL STUDIES

Informed by a taxonomy of evaluation abstractions and

operations we identified [3], we conducted two studies to

identify the ways cognitive modelers went about a debug-

ging task. The combined goal of these two studies was to

identify the concepts and relationships behind modelers‘

information requests in debugging, and how they were se-
quenced in time, as required by Steps B1 and B2

Study N: Participants and Methods

Study N (―N‖ for native environment) was a talk-aloud
study whose aim was to elicit modelers‘ information-

seeking language and approach for evaluating an ACT-R

simulation‘s runtime behavior.

We recruited 8 cognitive modelers at the Air Force Re-

search Laboratory and Carnegie-Mellon University. The

modelers‘ experience (primarily in the ACT-R language)

ranged from a few months to 20 years. Five were Ph.D.s,

two had masters degrees, and one was a Ph.D. candidate.

Their degrees were in psychology (3 modelers), computer

science (3), and linguistics (2).

The participants worked to debug the models ―Zbrodoff‖
and ―Paired‖ from the standard tutorials [4] distributed with

ACT-R 6.0. The Zbrodoff model we gave them was an ear-

ly attempt by one of the experimenters to build this model,

in which the author's rule design was flawed. The Paired

model‘s bug was a timing problem we introduced into a

correct solution written by one of the experimenters; we

chose that bug in order to provide a contrasting bug where

the rules appeared to be correct, but the behavior was

wrong.

Participants had 30 minutes to work on each model. Three

of the participants spent an hour and worked on both mod-
els, and the remaining five spent a half hour and worked on

just one model. Participants used the ACT-R 6.0 tool set,

and chose for themselves whether to use a textual or GUI

environment, elements of which are shown in Figure 2.

Participants talked aloud as they worked, and we video-

recorded their sessions.

Study W: Participants and Methods

Although Study N gave us a good sample of relatively natu-

ral debugging behavior, the data was sparse for more com-

plex evaluation abstractions. Traditional debugging tools

such as ACT-R‘s do not allow for automated extraction of

complex evaluation abstractions, and on several occasions

we saw modelers ask themselves complex questions, but

either guess at their answers based on scant evidence, or set

Figure 2: Elements of the standard ACT-R environments. (Left): Trace showing events and their properties. (Right): Buffer

viewer showing a chunk in the “imaginal” buffer of the model’s “short-term memory”.

them aside because they were too expensive to pursue. We

wondered what information seeking strategies modelers

would use if such a tool existed.

Therefore, for Study W (―W‖ for Wizard-of-Oz), we de-

signed an experiment to observe just one aspect of the de-

bugging process: seeking runtime information in a model
trace. We built an experimental tool to execute queries

similar to the more difficult questions modelers asked dur-

ing Study N. To focus users on this subtask alone, we had

them answer specific questions, and we denied them access

to other tools or information that might support the habitual

workarounds we had already studied. For example we did

not show them the model‘s source code, to prevent them

using it to guess or infer model behavior. Note that this

highly constrained design limits the validity of Study W

results to pure trace inspection behaviors, and the results

should be interpreted in conjunction with more natural ob-

servations, such as Study N and our prior work in this do-
main [3].

We recruited 7 cognitive modelers at the Air Force Re-

search Laboratory, with experience (primarily in the ACT-

R language) ranging from six months to 10 years. Five were

Ph.D.s and two had masters degrees. Their degrees were in

psychology (4 modelers), computer science (2), and linguis-

tics (1). Three of these participants had previously partici-

pated in Study N. For clarity, we will prefix each partici-

pant ID with ―N‖ for Study N and ―W‖ for Study W.

In selecting a model for the task, our criterion was that it

should present challenges similar to questions we saw
Study N modelers pose, but that they failed to easily answer

with existing tools. This let us observe how modelers would

take on these challenges in areas where the existing toolset

is weakest.

To satisfy this criterion, the model we used in Study W was

a defective solution to one of the modeling exercises in the

ACT-R 6.0 tutorial [4], simulating how a child learns regu-

lar and irregular verbs. A bug was chosen that was not trivi-

al to spot: the model‘s rules produced a mix of right and

wrong verbs, as real children do, but not in the right propor-

tions, and it failed to follow a child‘s typical learning curve.

We chose this task because it was heavily dependent on
complex runtime behavior over a long time span, and we

believed it would provide a rich context for exactly the

kinds of questions modelers found difficult to answer with

existing ACT-R tools. We ran a single simulation of 500

trials, then loaded the trace data into our tool. Figure 2

(Left) shows a few events of that trace. We set our tool's

initial display to the same output as the ACT-R tutorial.

Study W‘s participants‘ tasks were to find answers to the

following questions, designed to be similar to questions that

had caused participants difficulty in Study N. (T1): In trial

around 54000 seconds, the model produced ―HAD‖ as the
past tense of ―HAVE‖. Was that the first time that hap-

pened? (T2): What kinds of verbs are counted as regular

and irregular? (T3): Which rules, if any, ONLY fire when

the model is about to produce an ―-ed‖ ending? (T4): In the

trial that starts about 21017 seconds, Production701 fires. Is

that typical? If so, what's special about trials that don't do

this? If not, what's special about this trial? (T5): Under what

circumstances (if any) does the model write a chunk to dec-
larative memory that is grammatically incorrect?

To perform these tasks, participants verbally told the expe-

rimenter what information they wanted from the program‘s

runtime trace. The experimenter (the Wizard) used the tool

to produce the information the participant had requested.

Participants were allowed to point out errors in the Wi-

zard‘s interpretation of their queries, and the Wizard fixed

them until the participant was satisfied. Audio, video, query

text, and screenshots were recorded for all sessions. All

participants performed Tasks T1, T3, and T4, five per-

formed T5, and three performed T2. We allowed partici-

pants to work on the tasks as long as they liked, but cut off
the sessions at 1 hour, regardless of the number of tasks

completed.

The study produced 149 episodes of participant queries and

experimenter responses. Twelve were requests to look at

previous queries, and four were garbled or incomprehensi-

ble, leaving 133 distinct queries. We analyzed these data in

an iterative process that ultimately led to the language spe-

1
 Production70 was a rule that the model learned.

Abstraction (instance count) and
Participant request example

(Small portion of) result of
the request

Trial (75): The begin and end time
of a trial, and several model-specific
attributes.

W413a: All the trials where the verb

is HAVE […] I would like to see
what the stem is

trialnum: 2

start_time:200.155

word: “HAVE”

stem: “HAD”

end_time: 400.383

[…other trials…]

Event (26): A value with a time
stamp.

W412a: I’ll do a list of when Pro-
duction70 fires.

time: 15814.232

rule_name:

 “PRODUCTION70”

[…other events…]

State (20): A value with a begin
and end time.

W415a: So it executes a retrieval
[…] I want to see the details of that
chunk.

type: past-tense
buffer: retrieval

verb: use

stem: use

suffix: ed

start_time:1802.268

end_time: 2002.512

[…other states…]

Rules (12): The text of a production
rule.

W413a: Can I search for rules that
[…] affect the suffix slot?

(Wizard refused; ex-

periment prohibited

use of rule text)

Total (133)

Table 1: Types and counts of abstractions that Study W mod-

elers queried in Study W as they worked. (In Study N, all

modelers drew on all four categories of data.)

cification of Step B3. We describe the ways we validated

the analysis in a later section, but first we describe the em-

pirical results and implications (labeled as I-*).

B1/B2 RESULTS: THE MODELERS’ ABSTRACTIONS

The modelers‘ abstractions that we observed in Studies N

and W consisted of constructs that fell into four categories:

trials, events, states, and rule text.

The “trial”

The experimental ―trial‖ is a staple in the practice of cogni-

tive modeling, but it is not well-supported in ACT-R‘s

standard tool set. The only abstractions supported by the
debugging tools are simply the ACT-R programming ab-

stractions, such as chunks and buffers (recall the section

about our population). As a result, modelers can point and

click to see chunks, but to see trials, they would have to

write Lisp code to show them, or use some manual process.

For example, Participant N706 spent 7% of his time trying

to find a way to do a textual ―find‖ in an ACT-R log file,

just so he could step through and find out how many boun-

daries, and thus how many trials, were in the run.

Although modelers struggled when comparing entries that

were far apart in a lengthy trace, four of the eight partici-
pants in Study N nonetheless chose debugging strategies

that involved explicitly comparing behaviors between trials.

This suggests that trials were critically important to mod-

elers, despite their lack of support.

We therefore introduced support for trials in the tool we

built for Study W, in the form of a two-paned window that

let participants choose trials in one pane, and see the details

in the other (Figure 3). Study W modelers made heavy use

of them: trials were at the root of about half (75 of 133) of

all requests in Study W (Table 1). This detailed view

enabled Study W modelers to click on different trials and

immediately see the rule sequences, which reduced minutes
of searching down to a single request.

This design was still not ideal, however, because multiple

sequences were not visible at once, as several of the mod-

elers pointed out. W412b worked around the limitation by

remembering one sequence while he looked at another in

seeking patterns. W415d had the Wizard add summarized

facts about each sequence as attributes to each row of the

trial listing (e.g., Figure 3, top), such as how many rules

fired, whether event or state properties were present, or the

identity of the last rule that fired. W412a on the other hand

asked for a new feature:

W412a: [...to] visualize the sequence of productions fired
so that I can make a visual comparison, because going
through a list is a bit tedious.

Implications for supporting trials

Although the native ACT-R tools faithfully reflect the mod-

el‘s continuous view of time, modelers need support for a

segmented view of time (I-TRIAL), defined by identifying

some event type as a boundary between trials. Modelers

also needed support for viewing and comparing details

within those segments (I-VISUALIZE, I-DETAIL) as well as

collecting summaries or visualizations of critical features of

those details (I-COLLECT).

Events vs. States

Modelers‘ second and third most common constructs were

model events (behaviors) and model states (data). Study N

modelers made extensive use of both event logs and dis-

plays of variable contents (particularly ACT-R‘s chunks

and buffers) to learn about the models‘ behavior and state.
Study W modelers also showed strong interest in events and

states (Table 1), asking 26 queries about attributes of mo-

mentary events (primarily stimuli, responses, and rule fir-

ings), and 20 about state (working memory buffers and

long-term memory chunks).

Interestingly, even when modelers talked about state, they

tended to use event-oriented language, referring to some

event during the state, or marking a change of state:

W415a: What I would look for are events where a chunk
with an ED ending was put in the imaginal buffer then look
backward from that to find the […] imaginal action that put
the chunk there. (Italics added for emphasis.)

Implications for Supporting Events and States

Modelers evaluated in terms of both instantaneous events,

and states that persisted over time. Thus, these types of

evaluation abstractions are needed. The ways in which they

worked with these suggests that their query language should

allow referencing events as events, but referencing states as

attributes of the events at their boundaries (I-EVENT), or

during their lifespans (I-DURING).

All about rules

All participants in Study N kept a window open all the time

showing rule text. To avoid gathering redundant data on

code inspection, we allowed Study W participants to see

only the names and dynamic behavior of rules, but not their
text. Still, in twelve (9%) of Study W‘s 133 episodes, mod-

elers asked to read rule text, sometimes quite adamantly:

W415a: I’d really like to see the production. May I see the
production? ... It seems natural that you’d want to look at
the production.

Figure 3: W412b asked for “the production firing sequence”

(below) “…within this trial” (above, highlighted).

Not only did modelers want to see specific rules, but they

wanted to find rules having some attributes, in order to

identify causes of events, or to compare rules to each other.

For example, Participant N701 noticed in the log an error in

which the model was trying to press a non-existent key

called ―rope‖ (the Paired model was supposed to press a
digit key in certain circumstances). That participant then

searched the rules‘ text for ―press-key‖, to find candidate

rules that may have been immediately responsible for this

erroneous action. Similarly, in Study W, a modeler asked:

W415c: What productions do retrievals?

These can be time-consuming questions to answer in the

native ACT-R environment, as the information is scattered

in several places. For example the trace shows only the

names of rules that fired (e.g., in Figure 2 (Left), the second

row from the bottom shows that rule DETECT-STUDY-

ITEM fired). The model source file contains rules‘ content,

but only rules written by the modeler, not rules the model

learns itself (through ―production compilation‖).

Implications for Rule Information:

(I-RULETEXT): Unsurprisingly, the modelers needed to see

rule text. However, an interesting nuance is that modelers
wanted to query the text of rules, both human-authored and

model-generated, according to their attributes. This sug-

gests the need to query rule text in the same ways as states,

events, and trials.

B1/B2 RESULTS: RELATIONS AND SEQUENCES

Modelers made elaborate queries that composed, filtered,

selected, or summarized the simpler references to events,

states, trials, and rule text discussed above. Table 2 lists the

operations that made up these queries.

Operations for composing queries

Time-based and Dataflow/Slice composition

When modelers had questions relating to the sequencing of

events in the trace, they often needed multiple navigations

to answer them. For example, Participant N702 restarted a

run and painstakingly stepped forward to an ―earlier‖ time

he was curious about. By the time he found it, his previous

run was no longer in the scroll buffer:

N702: Oh, great, now I've lost the previous trial and I'm
doubting my memory... did this one fire? it was the next
one that didn't fire?

Study W modelers also asked for events with temporal rela-

tionships, usually starting with a known ―anchor‖ event and

adding a related event before, after, or simultaneous with

some other event of interest. For example:

W412a: I want to see what productions fired at these
times. […] or should we go back 50ms to see who pro-
duced these?

Events or states connected by dataflow and/or control-flow

relationships were regularly of interest to modelers. Some

of these requests were data centric:

W415c: So the chunks that were in declarative memory…
what buffer were they stored in [before they were in dec-
larative memory]?

Other, more intricate requests sought rules that had particu-

lar effects on data over time. For example to determine why

a particular chunk was retrieved, Study N modelers worked

backwards through the code to determine what had trig-

gered its retrieval. They essentially had to construct by hand

a backward slice of code that affected the output of interest.

Implications for Facilitating Composition

(I-TIME): Modelers used a variety of temporal relation-

ships: next, previous, simultaneous, and ―in the same pe-

riod‖. Such operations need to start with all ―anchor‖

events, then either include or exclude instances where the

non-anchor event is missing, in order to answer, respective-

ly, whether or what kind of events happened at nearby
times. (I-DATAFLOW): Modelers also needed operators to

understand how data moves from one variable to another

through various dataflow and control flow relationships.

Operations for summarizing

Study N participants were drowning in data. Modelers spent

a great deal of time scrolling through ACT-R‘s very de-

tailed logs and clicking through the debugger. Our purpose

in pursuing support for evaluation abstractions is to allow

modelers to hide extraneous information, leaving just the

relevant information accessible.

Filtering

One ―fire hose‖ of data was the declarative memory dump.

In the Paired task, most of the Study N modelers listed all

the chunks in long-term memory to see if they were being

created correctly. They drew wrong conclusions about the

distribution of chunks in at least half the cases because
chunks of the same type could not easily be made visible at

the same time.

Motivated by the flood of information overwhelming the

Study N modelers, we provided a more general filtering

Operators for composition

Time constructors:
Next, previous,
simultaneous, with-
in-trial items

Produce all items with the specified time
relationships, starting with an ―anchor
event‖, and including/excluding items with
no secondary event.

Slicing and dataf-
low constructors

Produce a backward dynamic slice through
code or a backward flow of data through

data structures.

Operations for summarizing, filtering, or rearranging

Filter Limit the items shown.

Distinct List and count distinct values of some attribute.

Set Do set operations on distinct results.

Sort Rearrange items in order by some property.

Operations for comparing details

Any, First,
Last

Produce any, the first, or the last, respectively,
single item with the specified properties.

Visualize

Produce a graphic (e.g., a bar chart) of all items
with the specified properties.

Table 2: Query-building operations in Study W. “item” means

an event, trial, or any other abstraction.

capability in Study W, and the modelers used it extensively.

Modelers filtered data in 122 of 133 episodes, and actively

changed the way they were filtering in 32 of them.

Ranges of values, unique values, and sets

Filtering rows of data is not the only way to summarize it.

Modelers often asked what range of values an attribute

could take on, and sometimes the relative frequency of

those values:

W415c: Can you show me the firing rates for the produc-
tions? Uh, not rates, but the number of times a production
was used?

W413a: What percentage of these verbs are irregular?

After seeing the result and listing the distinct verbs in-

volved, W413a then asked for set operations to find values

unique to one or the other set:

W413a: Now I want to [...] subtract the irregulars from the
regular. I want to do a diff between the [...] set of regular
rules and the set of irregular rules [in the trace] and see if
there’s any rule that is unique to regular.

Looking for things that are not there

Abstracting away information can even be a way to directly

test a hypothesis. Modelers sometimes asked for counterex-

amples to their hypotheses, treating an empty result as a

confirmation:

W412b: Is this rule firing when the trial is irregular […]
we’re looking for an empty set.

The result was indeed an empty table, but this exposed an

interesting problem with such queries: its lack of data left

no context to verify that the query had run correctly, con-

fusing both experimenter and participant. A related prob-

lem also appeared when modelers asked to list distinct

attribute values and their counts: in some situations mod-

elers expected them to be listed with a count of zero, but

our experimental tool omitted such values.

Implications for summarizing

(I-FILTER): Modelers needed to be able to filter data in

flexible and task-specific ways, without having to rerun the
program. (I-DISTINCT): Modelers needed to find value

ranges and list distinct values. They often applied these to

filtered lists. They sometimes needed set operations. (I-

ZEROES): Counts of distinct items in filtered lists should

include zero counts for items that did not pass through the

filters, rather than simply omitting them. This requires inte-

roperation between ―distinct‖ and filtering features.

B3/B4: ABSTRACT SYNTAX AND ITS VALIDATION

Drawing from the implications in the last two sections, in

step B3 we created a language specification in the form of

an abstract syntax to represent modelers‘ queries. In this

section we describe and validate it for soundness, coverage,

and viscosity relative to our participants’ data in Study W.

From Implications for Design to Abstract Syntax

Our abstract syntax specifies a ―natural‖ deep structure for

the final concrete language, which we will eventually de-

sign in Step C in accordance with these specifications. (Re-

call Figure 1.) We left the syntax of this language specifica-

tion abstract in order to avoid conflating modelers‘ needs

for model information with their need for help with query

syntax—an important but orthogonal issue.

An overview, by example

Our abstract syntax defines a query as a function that takes

a program trace and returns a table that represents all the

situations in the trace that matched the query. These
―tables‖ are actually data structures that could be used as

the basis for a variety of visualizations, although we chose

to depict them simply as tables in Study W.

For example, this query:
Rules_fired filter (name=“PRODUCTION70”)

next Buffer_goal

begins with the term Rules_fired, which is itself a sub-
query. It returns all the rule-firing events, their times (on a

simulation clock), and their attributes. Study W‘s imple-

mentation of this was simply a table stored within a data-

base representing the trace. (Study W had 37 such tables

stored in the trace database.)

The filter and next keywords in the query are operators.

(Recall them from Table 2 in the results section.) Here,

filter transforms Rules_fired into a new query that returns
only the rules that fired named ―PRODUCTION70‖. Next

then adds information to each row about the next change to

the ―goal‖ buffer—but only if that change happens before

the next time PRODUCTION70 fires. Next does so by

merging corresponding rows from two result tables (filter‘s

output table, and Buffer_goal), based on constraints on

their timestamps. Table 3 shows formal definitions of a
sample of common operators, including filter and next,

along with study results‘ implications they satisfy.

Validation

For purposes of analysis, we divided Study W transcripts

into 149 episodes representing participant queries and the

 Figure 4: Validation against Study W: (a) Recoded queries vs

wizard’s live queries. “Wrong” and “Failed” were experimen-

ter errors (b) Episodes covered by the abstract syntax (c)

Three panel members’ ratings for 14 sample episodes. 83%

were “right” or “fixable”. (d) Move depth: 91 moves (83%)

were low or no viscosity. BF=“buried filters” (see text)

8
3 3

13

1 0

7
3 4

0

10

20

right fixable problem

69

37

10 5 12

0
20
40
60
80

17

74

13 6
0

50

100

zero high/BF

125

8
0

100

200

Covered Not Coveredsame similar wrong fail refused

right fixable problem zero low high/BF high/other

covered not covered

a.

c.

b.

d.

eventual satisfaction of that query by the experimenter. A

single ―episode‖ began when the participant asked the wi-

zard to produce some output, and continued, sometimes

with several query attempts, until both parties were satisfied

that the output an adequate representation of the partici-

pant‘s request. Thus, each episode had either a final output
produced in the form of a table or visualization, or none

when a query could not be satisfied.

We coded each episode twice: once as an ―as requested‖

code and once as an ―as provided‖ code. The ―as provided‖

code was an objective, direct translation of the query string

the experimenter typed during the study (in Study W‘s

query language) to the final abstract syntax. The ―as re-

quested‖ code is a subjective coding—but using the same

abstract syntax—of what we in retrospect believed the par-

ticipant actually requested.

Validation of Coverage

Although it is not possible to validate coverage of the lan-

guage for the universe of modelers, we could objectively

validate it for our Study W participant data: our abstract
syntax was able to represent 125 (94%) of the 133 usable

and non-repetitive episodes from Study W (Figure 4b). Of

the remaining eight episodes, three were vague or logically

incoherent, four required extra complexity but had easier

substitutes (for example a ―set difference‖ operation on two

small groups of items), and one would have required a spe-

cial operator that we doubted would be widely used (a co-

occurrence matrix).

Validation of Soundness

To validate the soundness of the ―as-requested‖ recoding,

we asked a panel of experienced modelers (drawn, with

some overlap, from the same population as Studies N and

W) to review the output that as-requested codes would have

generated, for a random selection of anonymized episodes,
and asked them to find any mistakes in our post-experiment

analysis of what the participants had actually requested.

We gave the panel a random sample of 14 episodes out of

the 125 episodes that our abstract syntax aims to cover (see

the ―coverage‖ subsection above). For context we also gave

them relevant transcript segments and prior screenshots to

establish context, and a summary sheet giving statistics

about the model run. In each case, the panelists were asked

to indicate whether the query had been carried out correctly

per the participant‘s wishes.

The panelists were given five options, and a free text area to
explain their answer. The five options were ―right‖, ―fixa-

ble‖ (only rearrangement or simple arithmetic would be

needed to fix it), ―some missing‖, ―right assuming…‖ (pa-

nelist did not have enough information about the model to

be sure), and ―wrong‖.

After checking modelers‘ assumptions in the ―right, assum-

ing‖ category and changing the code based on the assump-

tion when possible, on average the panelists rated 11.6

(83%) of the 14 queries as either ―right‖ or ―fixable‖, as

shown in Figure 4c, and all but one episode was rated as

―right‖ or ―fixable‖ by at least 2 panelists.

We also compared the ―as-requested‖ codes directly to the

―as-provided‖ codings, which participants helped refine

during the study. As Figure 4a shows, in 106 (88%) of the

121 non-refused episodes (12 were requests for rule text),
the two codings were substantially the same, in the sense

that the as-provided query produced at least enough infor-

mation that a modeler could in principle use it to produce

the as-requested query‘s results by rearranging data or

doing simple arithmetic. 10 episodes (7%) were clear expe-

rimenter errors, and in 5 (4%), the experimenter could not

produce a response.

Validation of Low Viscosity

In Study W, modelers often evolved their queries incremen-

tally rather than invent them from whole cloth. We would

like to avoid the situation where a modeler adds and adds to

a query, then wants to change an earlier decision, and has to

undo all those layers to make the change; in other words,

we want low viscosity [7].

To measure viscosity, we tightened our focus to moves ra-

ther than episodes. In the realm of strategy literature, Bates

[2], defined moves as ―an identifiable thought or action that

is part of information searching‖. Thus, in this study, we

defined each move to be a single addition, deletion, or

Operator: Implication ID (see Results sections) Definition
filter: (I-FILTER)
Given a query and some criterion, returns a more limited variant of the
original query that matches the criterion. (See text for example)

Given: query Q returning a set of n tuples of k tagged attributes, { (a1:Q.vj-

1,… ak:Q.vjk) | j=1..n}, criterion as the s
th

 attribute tag of Q

filter (Q,as=vs) returns: { (a1: Q.vj1, … ak: Q.vjk) | j=1..n such that Q.vjs = vs}.

next/prior/simul: (I-TIME)
Pair up two event queries into a single query returning data about pairs
of events, one after the other. (See text for example)

Given: event queries E and F returning {(a1: E.vj, time: E.tj) | j=1..nE} and
{(a1: F.vk, time: F.tk) | k=1..nF}

next(E,F) returns: {(time:E.tj, a1E:E.vj, timeE:E.tj, a1F:vk, timeF:F.tk) |
E.tj<F.tk≤E.tj+1 and F.tk-1≤E.tj when k>1}.

distinct: (I-DISTINCT)
Produces a list of the distinct values that some attribute of a query result
took on, and a count of each value’s occurrences.

Given: query Q, whose attributes include a1…k then

distinct(P,a1..k) returns: { (a1..k:Q.v1…k, countQ:q) | for each distinct tuple of
values Q.v1…k that co-occur together, exactly q times. }

segment: (I-TRIAL)
Breaks a trace into subtraces (usually, trials) using an event query to
specify the boundaries between each subtrace (trial)”

Given: event query E returning {(a1:E.vk, time:E.tk) | k=1..n}

segment(E) returns: {(segE:k, time:E.tk, endtime:E.tk+1) | k=0..n} where
t0=0 and tk+1 is the last timestamp in the trace.

Table 3: A sample of the most common query operators. The

set notation shows the table that the query returns when ap-

plied to a trace. ak:vk refers to a value vk in a column titled ak

in the query’s output table

change of operators in the formal codings, and we dissected

each pair of adjacent episodes into atomic moves necessary

to explain the difference between them.

Of the 149 episodes, 55 were not analyzable as moves from

the previous query: either one or the other had no coding, or

the requests had so little in common that it seemed unlikely
a modeler would want to transform one to the other in this

way. Of the remaining 94 episode pairs, we decomposed 6

into 3 moves, 19 into 2 moves, and 66 were single moves,

for a total of 110 moves.

We operationalized viscosity by classifying moves as shal-

low, low-viscosity moves, when only the outermost layer of

the abstract syntax tree was modified; and deep, high-

viscosity moves otherwise. As shown in Figure 4d, 91 of

these 110 moves (83%) were shallow. In fact 17 of those

(15%) required no changes at all. 19 were deep moves. Our

intention is that language designer tasked with building a

usable, fluid debugging interaction language could rely on
the abstract syntax to drive the affordances offered: e.g.,

menu options to add, remove, or change the ―outermost‖

layers of the query could map to the most common ways

Study W participants sequenced their queries. Our 83%

viscosity score, while not ideal, seems reasonable for at

least providing a good basis for such interaction design.

Although we did not find an elegant abstract syntax that

could improve viscosity further, an analysis of the 19 deep

queries reveals that 13 of them fell into an information-

seeking strategy in which modelers repeatedly modified

filters underlying distinct or detail operators to see how the

query results changed. Because of this strategy, and other

interactions between these operators (see I-ZEROES and I-

DISTINCT above), some of the viscosity could be further

reduced in the user interface design by providing affor-

dances to directly manipulate this class of ―buried‖ filters.

DISCUSSION

We expect our debugging language to be most useful for

reactive systems like ACT-R, RML, and EPIC, in which

behavior is tightly (and often, probabilistically) driven by

the timing and content of environmental inputs. In such

systems, modelers‘ analysis of runtime behavior in concert

with environmental conditions is critical. We designed our

language to be relatively modeling-language agnostic, and
are now starting a field study with a prototype debugger for

RML [5] based on the language. (RML is a cognitive mod-

eling language being developed at the Air Force.)

A methodological question we wrestled with was how to

validate replicability of the complex coding of Study W

episodes. It seemed unlikely that an inter-rater reliability

scheme would work: two researchers would not likely use

the abstract syntax in precisely the same way to represent

modelers‘ informal programs. Our choice was to validate

soundness, coverage, and viscosity instead of replicability.

In surveying other researchers‘ work, we found the question

of validating replicability in NP studies to be a common

problem. As Table 4 shows, NP researchers have been solv-

ing this by validating other properties of their coding

schemes. Ko et al., for example [10], validated the distribu-

tion of codes by conducting a survey of expert program-
mers to check the work a single coder had done. Pane et al.

[16] also validated distribution by averaging ratings from a

small panel of domain experts (experienced programmers)

tasked with assessing aspects of the language and structure

in children‘s handwritten solutions to programming prob-

lems. Little et al. [12] checked usability and ease of produc-

tion with a summative validation of whether users with lit-

tle training could produce Chickenfoot queries and accom-

plish tasks with the tool. One contribution of this paper,

then, is the identification of the choices of language proper-

ties that different NP validation methods can evaluate.

NP+ may be useful beyond our particular case, and we hope
to use it in other design projects in the future. We envision

it as being particularly appropriate for language designers

uncomfortable making the leap from NP‘s Step B, under-

standing the target audience, to Step C, designing the new

system. Such a leap requires language designers to have a

level of user-centered design experience and a comfort with

the target domain that may not always be practical. For ex-

ample, we envision NP+ as an aid to programming lan-

guage specialists who know how to build an abstract syn-

tax, but who are looking for some user-centered basis for

making technical choices. For our purposes, and perhaps for
other researchers, the path from Step B‘s ―implications for

design‖ to Step C‘s concrete language design seemed to

rely on too much ―magic‖ to translate into correct and fluid

designs with broad coverage, and Step D seemed too long

to wait to spot this kind of problem. However, we have not

validated the methodology beyond this initial case study,

and future research is needed to evaluate its generality.

Language/Tool Validation method Property validated

Whyline for Alice
[9]

Triangulation; subjective
inter-rater coding com-
parison

Support for cogni-
tive breakdown
theory

Contributed to

Whyline for Java
[10]

Survey of domain ex-

perts

Relative importance

of information seek-
ing goals

Chickenfoot for
end-user web
scripting [12]

Usability study Usability and ease
of production

Hands language
for children [16]

Experts working inde-
pendently, ratings aver-

aged together

Reliability of re-
searcher classifica-

tion

This paper (de-
bugging for cog-
nitive modelers)

Compare codings, count
codings,
expert panel,
depth-check moves

Coverage, sound-
ness relative to
dataset, and viscosi-
ty.

Table 4: Natural Programming practitioners have validated a

variety of properties, using a variety of methods. This paper

is at the bottom of the table.

CONCLUSION

In this paper we empirically investigated cognitive mod-

elers debugging to derive a design specification for a de-

bugging interaction language for them. Some interesting

insights about this population‘s debugging needs were:

 Modelers needed to refer to states by their endpoints,

or events that occur during the state.

 Modelers preferred to ―anchor‖ temporal relationship
queries starting from a known set of events.

 They needed results that integrated source code (origi-

nal as well as learned rules) and runtime data together

into the same query results.

We then validated our design specification in several ways,

showing that, in the context of our collected data, our de-

sign was reasonably complete and sound, and was a low-

viscosity representation of the query evolution paths that

modelers followed.

Finally, we used our investigation as an initial case study in

NP+. Replacing the leap of design expertise in the NP

process with precise, explicit steps, NP+ helped us ground
our language design in empirical evidence and validate

along the way. Although some HCI researchers are com-

fortable moving directly from formative empirical results to

a language design, for us the more explicit roadmap of NP+

helped us incrementally monitor our progress towards

meeting the needs of our users.

ACKNOWLEDGMENTS

We thank our participants for their help, and AFOSR for

support under FA9550-10-1-0326 and FA9550-09-1-0213.

REFERENCES

1. Anderson, J., Boyle, C. Corbett, A., and Lewis, M. Cog-

nitive modeling and intelligent tutoring, In Artificial In-

telligence and Learning Environments, W. Clancey and

E. Soloway, (Eds.). MIT Press (1990), 7-49.

2. Bates, M. Where should the person stop and the infor-

mation search interface start? Information Processing

and Management, 26:5, (1990), 575-591.

3. Bogart, C., Burnett, M., Douglass, S., Piorkowski, D.,

Shinsel, A. Does my model work? Evaluation abstrac-

tions of cognitive modelers. Proc. VLHCC, IEEE
(2010), 49-56.

4. Bothell, D. et al., ACT-R Tutorial. Distributed with

ACT-R 6.0 version 1.3 r766. http://act-

r.psy.cmu.edu/actr6/. Retrieved August, 2009.

5. Douglass, S., Mittal, S., Using domain specific languag-

es to improve scale and integration of cognitive models,

Behavior Representation in Modeling and Simulation,

(2011).

6. Fu, W. and Pirolli, P. SNIF-ACT: A cognitive model of

user navigation on the world wide web. Human-

Computer Interaction, 22:4 (2007), 355-412

7. Green, T. and Petre, M. Usability Analysis of Visual

Programming Environments: A ‗Cognitive Dimensions‘

Framework. Journal of Visual Languages and Compu-

ting, 7:2 (1996), 131-174.

8. John, B. and Kieras, D. The GOMS family of user inter-

face analysis techniques: comparison and contrast. ACM

TOCHI 3:4 (1996), 320-351.

9. Ko, A., Myers, B. A framework and methodology for

studying the causes of software errors in programming

systems. J. Vis. Langs. & Computing, 16 (2005), 41-84.

10. Ko, A., DeLine, R. and Venolia, G. Information needs

in collocated software development teams. Proc. ICSE,

ACM (2007) 344–353.

11. Ko A., Myers, B. Finding causes of program output with
the Java Whyline. Proc. CHI, ACM (2009), 1569-1578.

12. Little, G., Miller, R., Chou, V., Bernstein, M., Lau, T.

and Cypher, A., Sloppy programming, In No Code Re-

quired, Cypher, A., Dontcheva, M., Lau, T. and Nichols,

J. (Eds.). Morgan Kaufmann (2010), 289-307.

13. Myers, B., Weitzman, D., Ko, A., Chau, D. Answering

why and why not questions in user interfaces. Proc.

CHI, ACM (2006), 397-406.

14. Neumann, C., Metoyer, R. and Burnett, M. End-user

strategy programming. J. Visual Languages and Compu-

ting, 20:1 (2009), 16-29.

15. Newell, A. and Card. S. The prospects for psychological

science in human-computer interaction. Human-

Computer Interaction, 1:3 (1985), 209-242.

16. Pane, J., Ratanamahatana, C. and Myers, B., ―Studying
the language and structure in non-programmers‘ solu-

tions to programming problems,‖ Intl. J. Human-

Computer Studies, 54:2 (2001) 237–264.

17. Pane, J., Myers, B., More Natural Programming Lan-

guages and Environments,‖ In End User Development,

vol. 9 of the Human-Computer Interaction Series, H.

Lieberman, F. Paterno, V. Wulf, (Eds.). Springer (2006).

18. Pirolli, P., Card, S. Information foraging in information

access environments. Proc CHI, ACM (1995), 51-58.

19. Segal, J. Some problems of professional end user devel-

opers. Proc. VLHCC, IEEE (2007), 111-118.

20. Tor, K., Ritter, F., Haynes, S. and Cohen, M., CaDaDis:

A tool for displaying the behavior of cognitive models

and agents. Proc. Conf. on Behavior Representation in

Modeling and Simulation, (2004), 192–200.

21. Wong, J. and Hong, J. Making mashups with Marmite:

Re-purposing web content through end-user program-

ming. Proc. CHI, ACM (2007), 1435-1444.

22. Yaremko, R., Harari, H., Harrison, R., Lynn, E. Refer-

ence Handbook of Research and Statistical Methods in

Psychology for Students and Professionals. Harper and

Row (1982), New York.

