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ABSTRACT 

In this paper, we investigate how a debugging environment 

should support a population doing work at the core of HCI 

research: cognitive modelers.  In conducting this investiga-

tion, we extended the Natural Programming methodology (a 

user-centered design method for HCI researchers of pro-

gramming environments), to add an explicit method for 

mapping the outcomes of NP‘s empirical investigations to a 

language design. This provided us with a concrete way to 

make the design leap from empirical assessment of users‘ 

needs to a language. The contributions of our work are 

therefore: (1) empirical evidence about the content and se-
quence of cognitive modelers‘ information needs when de-

bugging, (2) a new, empirically derived, design specifica-

tion for a debugging interaction language for cognitive 

modelers, and (3) an initial case study of our ―Natural Pro-

gramming Plus‖ methodology.  
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INTRODUCTION  

Although the needs of both professional and end-user pro-

grammers have become popular topics in HCI research, the 

HCI needs of people who program in order to build scientif-

ic models have received relatively little attention—

especially in the realm of debugging. Tools and languages 

exist to enable them to write programs, but relatively little 
research investigates how to support them in the debugging 

phase of programming.   

A population of modelers in the very core of HCI research 

is cognitive psychologists working with cognitive models. 

Cognitive models have contributed important foundations 

to HCI, such as GOMS, information foraging theory, and 

cognitive tutoring (e.g., [1, 6, 8, 15, 18]). A few practical 

tools for modeling have emerged from the modeling com-

munity itself (e.g. [20]), but HCI research into how to sup-

port the population doing this important work is sparse. 

This paper aims to help fill this gap. 

We believe that cognitive modelers mentally construct 

evaluation abstractions—abstractions they work with when 

evaluating a model‘s runtime behaviors [3]. These abstrac-

tions range from simple reflections of a model‘s internal 

data structures (e.g., content of simulated short-term memo-
ry as a model runs), to much more complex abstractions 

(e.g., some particular recurring pattern of short-term memo-

ry changes). When modelers‘ abstractions do not coincide 

with the model‘s internal data structures, today‘s debugging 

tools do not support them well.  

To overcome this lack of support, cognitive modelers some-

times write separate programs just to debug their models. 

Modelers use these secondary programs to examine their 

models‘ (i.e. primary programs’) logs and outputs, to un-

derstand, debug, and validate the model‘s behavior. [3, 19]. 

The abstractions captured by these secondary programs are 
often the same abstractions that modelers verbalize as in-

formation goals while debugging [3], so we set out to de-

sign a useful design specification for an interactive ―debug-

ging language‖ that would support both kinds of evaluation 

abstractions – one-off debugging questions and persistent 

secondary programs – within a single unified tool.  

To accomplish this, we needed to choose a methodology to 

investigate  the constructs, relationships, and interaction 

sequences that modelers used to assess and fix model beha-

vior, at a finer-grained level of detail than previous work 

[3]. We were faced with the choice between a task analysis, 

(appropriate for interactivity, and for one-off debugging 
questions) and a language design methodology (appropriate 

for the secondary programs described above). Since mod-

elers‘ information queries in both areas seemed to have a 

complex internal structure, we chose to adapt a program-

ming language design methodology: Natural Programming. 

Natural Programming [17] is a user-centered design ap-

proach in which researchers observe how people try to na-

turally express programming intentions, and use these ob-

servations to devise programming tools whose conceptual 

models fit as closely as possible to the participants‘ expres-

sions. This technique was first introduced to design the 
children‘s programming language Hands [16]. It has since 
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been used to design numerous tools that support program-

ming, scripting, and debugging (e.g., [11, 13, 14, 21]). The 

Natural Programming methodology, however, leaves impli-

cit exactly how designers should connect their empirical 

observations of people to a new language that can serve 

those people well.  

Therefore, for this work we extended NP (henceforth, 

―Natural Programming Plus‖ or NP+), by adding new steps 

for precisely and accountably treating interactive sequences 

of naturally expressed verbal ―programs‖ and their results 

(in our case, modeler‘s evaluation abstractions) as cases of 

a language specification. This precision helped us by pro-

viding both scaffolding for our effort to design an interac-

tive debugging language based on empirical evidence, and 

ongoing analytical measures of how well the emerging lan-

guage matched that evidence.  

The contributions of this paper are:  

 Empirical evidence about the evaluation abstractions 
requested by cognitive modelers, and how those ab-

stractions were sequenced over time. 

 An empirically derived and validated design specifica-

tion for a debugging interaction language for cognitive 

modelers. 

 An initial case study of Natural Programming Plus, an 

extension of the Natural Programming methodology to 

more precisely capture and validate the structure and 

flow of ideas expressed by the participants.  

The first two contributions also serve as initial data points 

towards an understanding of the potential of NP+ as a me-
thodology of wider interest, a prospect which we will dis-

cuss at the end of this paper.  

METHODOLOGY 

In this section we present our methodology at a high level. 

The remaining sections then illustrate how we used it.  

Pane and Myers [17] defined the Natural Programming 

methodology as four steps (applied iteratively, as needed): 

A. Identify the target audience and domain 

B. Understand the target audience 

C. Design the new system (e.g., a language or pro-

gramming tool‘s interaction language) 

D. Evaluate the new system 

We expanded on Step B to provide a process for designing 

and validating a specification of the new language. The 

essence of our process was to use a pipeline of two experi-
ments, which together allowed refining the results to derive 

a precise specification, and finally empirically validating 

three properties of the derived specification. Thus, as Figure 

1 summarizes, we replaced Step B with the following four 

steps: 

Step B1/Formative: As is implied by the original Natural 

Programming process, we conducted a formative study (see 

Study N, below) to harvest the constructs and relationships 

that modelers used to describe what they were looking for 

when debugging. B1‘s results are the constructs and rela-

tionships the participants used. Why: These constructs and 

relationships are the basis of a software tool for administer-
ing the experiment in B2.  

Step B2/Wizard: We performed a Wizard of Oz study (see 

Study W, below), using a query tool in which the constructs 

and relationships of B1 were supported, but without a con-

crete syntax or GUI yet. Participants were asked to seek 

information similar to queries observed in the course of 

B1‘s tasks, by asking the experimenter (Wizard) who would 

manually query the results and show the participant a table 

of the results. The results of this step were (1) any con-

structs and relationships missed or misunderstood in B1, 

and (2) the way participants naturally sequenced their inte-
ractions in response to the feedback of executing each 

query. Why: This step revealed how modelers responded 

when the capabilities derived from B1 actually executed. It 

also allowed us to validate the B1 results with the target 

audience itself. 

Step B3/Derive a precise specification: We refined the re-

sults of B1 and B2 into a language specification. When 

possible, we structured the specification such that small 

differences from one user request to the next were mirrored 

by small differences in the language used to represent mod-

elers‘ queries. Why: The language specification is a precise 

form of ―Implications 
for Design‖.  Because 

it is precise, it was 

auditable, and this 

facilitated evaluation 

and kept us accounta-

ble.  

Step B4/Validation: 

We measured cover-

age of the language 

specification (how 

many of B2‘s requests 
it could execute), its 

soundness (correct-

   

Figure 1: Natural Programming Plus replaces NP’s Step B with Steps B1-B4. Arrows show what results 

feed from one step to the next. The “Language” from step C to D may mean an interaction language or 

programming tool, not necessarily a programming language. 



 

 

ness, i.e., the responses it did produce are what the partici-

pants asked for, in the context of the available data), and its 

viscosity (the effort required in the new language as speci-

fied to change from one request to the next, if the requests 

were related.)  

The rest of this paper shows how we applied Steps B1-B4 
of NP+ to the problem of designing a debugging interaction 

language for cognitive modelers.  

OUR POPULATION: COGNITIVE MODELERS  

Cognitive modelers try to model cognitive functioning of 

the human mind. They often have backgrounds in psychol-

ogy or linguistics; some also have backgrounds in computer 

science, but many do not (as our empirical data in later sec-

tions will show). To build their models, they sometimes use 

rule-based languages specifically designed for cognitive 

modeling, such as ACT-R, and ACT-R provided the context 

for our investigation. ACT-R is both a theory of human 

cognition, and a simulation language that implements the 

theory. In ACT-R, modelers specify rules that move 

―chunks‖ of information among cognitive subsystems such 
as vision, memory, goal, and motor modules. The chunk is 

ACT-R‘s primary data structure, which consists of a vary-

ing number of named slots, and simulates a grouping of 

mental information in short-term memory (buffers) or long-

term (declarative) memory. ACT-R builds in current as-

sumptions from the cognitive science community about 

how these subsystems work.  

A common task of cognitive modelers is to simulate a hu-

man subject participating in a psychological experiment. In 

the simulated experiments, the modeler manipulates some-

thing and the model (i.e., the simulated human) responds. 
This stimulus/response pattern happens multiple times, and 

each instance is called a trial. Yaremko et. al. define a trial 

as ―a single instance or event from which a datum is col-

lected‖ [22].  

Time passes during a trial, and many events may occur be-

tween the stimulus and response. Data that could in prin-

ciple be collected about a single trial include things such as: 

a start and end time as per a simulation clock, the timing 

and attributes of stimuli presented and responses observed, 

and the timing and attributes of the model‘s (simulated hu-

man's) internal mental events. Thus, trials are composed of 

data, some or all of which a cognitive modeler may find 
interesting when evaluating or debugging a model.  

STEPS B1-B2: TWO EMPIRICAL STUDIES  

Informed by a taxonomy of evaluation abstractions and 

operations we identified [3], we conducted two studies to 

identify the ways cognitive modelers went about a debug-

ging task. The combined goal of these two studies was to 

identify the concepts and relationships behind modelers‘ 

information requests in debugging, and how they were se-
quenced in time, as required by Steps B1 and B2 

Study N: Participants and Methods   

Study N (―N‖ for native environment) was a talk-aloud 
study whose aim was to elicit modelers‘ information-

seeking language and approach for evaluating an ACT-R 

simulation‘s runtime behavior.  

We recruited 8 cognitive modelers at the Air Force Re-

search Laboratory and Carnegie-Mellon University.  The 

modelers‘ experience (primarily in the ACT-R language) 

ranged from a few months to 20 years. Five were Ph.D.s, 

two had masters degrees, and one was a Ph.D. candidate. 

Their degrees were in psychology (3 modelers), computer 

science (3), and linguistics (2). 

The participants worked to debug the models ―Zbrodoff‖ 
and ―Paired‖ from the standard tutorials [4] distributed with 

ACT-R 6.0. The Zbrodoff model we gave them was an ear-

ly attempt by one of the experimenters to build this model, 

in which the author's rule design was flawed. The Paired 

model‘s bug was a timing problem we introduced into a 

correct solution written by one of the experimenters; we 

chose that bug in order to provide a contrasting bug where 

the rules appeared to be correct, but the behavior was 

wrong.  

Participants had 30 minutes to work on each model. Three 

of the participants spent an hour and worked on both mod-
els, and the remaining five spent a half hour and worked on 

just one model. Participants used the ACT-R 6.0 tool set, 

and chose for themselves whether to use a textual or GUI 

environment, elements of which are shown in Figure 2. 

Participants talked aloud as they worked, and we video-

recorded their sessions.  

Study W: Participants and Methods  

Although Study N gave us a good sample of relatively natu-

ral debugging behavior, the data was sparse for more com-

plex evaluation abstractions. Traditional debugging tools 

such as ACT-R‘s do not allow for automated extraction of 

complex evaluation abstractions, and on several occasions 

we saw modelers ask themselves complex questions, but 

either guess at their answers based on scant evidence, or set 

 

Figure 2: Elements of the standard ACT-R environments. (Left): Trace showing events and their properties. (Right): Buffer 

viewer showing a chunk in the “imaginal” buffer of the model’s “short-term memory”.  



 

 

them aside because they were too expensive to pursue.  We 

wondered what information seeking strategies modelers 

would use if such a tool existed. 

Therefore, for Study W (―W‖ for Wizard-of-Oz), we de-

signed an experiment to observe just one aspect of the de-

bugging process: seeking runtime information in a model 
trace. We built an experimental tool to execute queries 

similar to the more difficult questions modelers asked dur-

ing Study N. To focus users on this subtask alone, we had 

them answer specific questions, and we denied them access 

to other tools or information that might support the habitual 

workarounds we had already studied. For example we did 

not show them the model‘s source code, to prevent them 

using it to guess or infer model behavior. Note that this 

highly constrained design limits the validity of Study W 

results to pure trace inspection behaviors, and the results 

should be interpreted in conjunction with more natural ob-

servations, such as Study N and our prior work in this do-
main [3]. 

We recruited 7 cognitive modelers at the Air Force Re-

search Laboratory, with experience (primarily in the ACT-

R language) ranging from six months to 10 years. Five were 

Ph.D.s and two had masters degrees. Their degrees were in 

psychology (4 modelers), computer science (2), and linguis-

tics (1). Three of these participants had previously partici-

pated in Study N. For clarity, we will prefix each partici-

pant ID with ―N‖ for Study N and ―W‖ for Study W.  

In selecting a model for the task, our criterion was that it 

should present challenges similar to questions we saw 
Study N modelers pose, but that they failed to easily answer 

with existing tools. This let us observe how modelers would 

take on these challenges in areas where the existing toolset 

is weakest.  

To satisfy this criterion, the model we used in Study W was 

a defective solution to one of the modeling exercises in the 

ACT-R 6.0 tutorial [4], simulating how a child learns regu-

lar and irregular verbs. A bug was chosen that was not trivi-

al to spot: the model‘s rules produced a mix of right and 

wrong verbs, as real children do, but not in the right propor-

tions, and it failed to follow a child‘s typical learning curve. 

We chose this task because it was heavily dependent on 
complex runtime behavior over a long time span, and we 

believed it would provide a rich context for exactly the 

kinds of questions modelers found difficult to answer with 

existing ACT-R tools. We ran a single simulation of 500 

trials, then loaded the trace data into our tool. Figure 2 

(Left) shows a few events of that trace. We set our tool's 

initial display to the same output as the ACT-R tutorial.  

Study W‘s participants‘ tasks were to find answers to the 

following questions, designed to be similar to questions that 

had caused participants difficulty in Study N. (T1): In trial 

around 54000 seconds, the model produced ―HAD‖ as the 
past tense of ―HAVE‖. Was that the first time that hap-

pened? (T2): What kinds of verbs are counted as regular 

and irregular? (T3): Which rules, if any, ONLY fire when 

the model is about to produce an ―-ed‖ ending? (T4): In the 

trial that starts about 21017 seconds, Production701 fires. Is 

that typical? If so, what's special about trials that don't do 

this? If not, what's special about this trial? (T5): Under what 

circumstances (if any) does the model write a chunk to dec-
larative memory that is grammatically incorrect?  

To perform these tasks, participants verbally told the expe-

rimenter what information they wanted from the program‘s 

runtime trace. The experimenter (the Wizard) used the tool 

to produce the information the participant had requested. 

Participants were allowed to point out errors in the Wi-

zard‘s interpretation of their queries, and the Wizard fixed 

them until the participant was satisfied. Audio, video, query 

text, and screenshots were recorded for all sessions. All 

participants performed Tasks T1, T3, and T4, five per-

formed T5, and three performed T2. We allowed partici-

pants to work on the tasks as long as they liked, but cut off 
the sessions at 1 hour, regardless of the number of tasks 

completed. 

The study produced 149 episodes of participant queries and 

experimenter responses. Twelve were requests to look at 

previous queries, and four were garbled or incomprehensi-

ble, leaving 133 distinct queries.  We analyzed these data in 

an iterative process that ultimately led to the language spe-

                                                        
1
 Production70 was a rule that the model learned. 

Abstraction (instance count) and 
Participant request example 

(Small portion of) result of 
the request  

Trial (75): The begin and end time 
of a trial, and several model-specific 
attributes. 
 

W413a: All the trials where the verb 

is HAVE […] I would like to see 
what the stem is 

trialnum:  2 

start_time:200.155 

word:      “HAVE” 

stem:      “HAD” 

end_time:  400.383 

 
 

 

[…other trials…] 

Event  (26):  A value with a time 
stamp. 
 

W412a: I’ll do a list of when Pro-
duction70 fires. 

time:  15814.232 

rule_name:  

       “PRODUCTION70” 

 
 

[…other events…] 

State  (20): A value with a begin 
and end time.  
 

W415a: So it executes a retrieval 
[…] I want to see the details of that 
chunk. 

type:     past-tense 
buffer:    retrieval 

verb:      use 

stem:      use 

suffix:    ed 

start_time:1802.268 

end_time:  2002.512 
 

[…other states…] 

Rules (12): The text of a production 
rule. 
 

W413a: Can I search for rules that 
[…] affect the suffix slot?  

 

(Wizard refused; ex-

periment prohibited 

use of rule text) 

 

Total (133)  

Table 1: Types and counts of abstractions that Study W mod-

elers queried in Study W as they worked.  (In Study N, all 

modelers drew on all four categories of data.)  



 

 

cification of Step B3. We describe the ways we validated 

the analysis in a later section, but first we describe the em-

pirical results and implications (labeled as I-*).  

B1/B2 RESULTS: THE MODELERS’ ABSTRACTIONS  

The modelers‘ abstractions that we observed in Studies N 

and W consisted of constructs that fell into four categories: 

trials, events, states, and rule text. 

The “trial” 

The experimental ―trial‖ is a staple in the practice of cogni-

tive modeling, but it is not well-supported in ACT-R‘s 

standard tool set. The only abstractions supported by the 
debugging tools are simply the ACT-R programming ab-

stractions, such as chunks and buffers (recall the section 

about our population). As a result, modelers can point and 

click to see chunks, but to see trials, they would have to 

write Lisp code to show them, or use some manual process. 

For example, Participant N706 spent 7% of his time trying 

to find a way to do a textual ―find‖ in an ACT-R log file, 

just so he could step through and find out how many boun-

daries, and thus how many trials, were in the run.  

Although modelers struggled when comparing entries that 

were far apart in a lengthy trace, four of the eight partici-
pants in Study N nonetheless chose debugging strategies 

that involved explicitly comparing behaviors between trials. 

This suggests that trials were critically important to mod-

elers, despite their lack of support.  

We therefore introduced support for trials in the tool we 

built for Study W, in the form of a two-paned window that 

let participants choose trials in one pane, and see the details 

in the other (Figure 3). Study W modelers made heavy use 

of them: trials were at the root of about half (75 of 133) of 

all requests in Study W (Table 1). This detailed view 

enabled Study W modelers to click on different trials and 

immediately see the rule sequences, which reduced minutes 
of searching down to a single request.  

This design was still not ideal, however, because multiple 

sequences were not visible at once, as several of the mod-

elers pointed out. W412b worked around the limitation by 

remembering one sequence while he looked at another in 

seeking patterns. W415d had the Wizard add summarized 

facts about each sequence as attributes to each row of the 

trial listing (e.g., Figure 3, top), such as how many rules 

fired, whether event or state properties were present, or the 

identity of the last rule that fired. W412a on the other hand 

asked for a new feature:  

W412a: [...to] visualize the sequence of productions fired 
so that I can make a visual comparison, because going 
through a list is a bit tedious.  

Implications for supporting trials  

Although the native ACT-R tools faithfully reflect the mod-

el‘s continuous view of time, modelers need support for a 

segmented view of time (I-TRIAL), defined by identifying 

some event type as a boundary between trials.  Modelers 

also needed support for viewing and comparing details 

within those segments (I-VISUALIZE, I-DETAIL) as well as 

collecting summaries or visualizations of critical features of 

those details (I-COLLECT). 

Events vs. States  

Modelers‘ second and third most common constructs were 

model events (behaviors) and model states (data).  Study N 

modelers made extensive use of both event logs and dis-

plays of variable contents (particularly ACT-R‘s chunks 

and buffers) to learn about the models‘ behavior and state. 
Study W modelers also showed strong interest in events and 

states (Table 1), asking 26 queries about attributes of mo-

mentary events (primarily stimuli, responses, and rule fir-

ings), and 20 about state (working memory buffers and 

long-term memory chunks).  

Interestingly, even when modelers talked about state, they 

tended to use event-oriented language, referring to some 

event during the state, or marking a change of state:  

W415a: What I would look for are events where a chunk 
with an ED ending was put in the imaginal buffer then look 
backward from that to find the […] imaginal action that put 
the chunk there. (Italics added for emphasis.)  

Implications for Supporting Events and States  

Modelers evaluated in terms of both instantaneous events, 

and states that persisted over time. Thus, these types of 

evaluation abstractions are needed. The ways in which they 

worked with these suggests that their query language should 

allow referencing events as events, but referencing states as 

attributes of the events at their boundaries (I-EVENT), or 

during their lifespans (I-DURING).  

All about rules  

All participants in Study N kept a window open all the time 

showing rule text. To avoid gathering redundant data on 

code inspection, we allowed Study W participants to see 

only the names and dynamic behavior of rules, but not their 
text. Still, in twelve  (9%) of Study W‘s 133 episodes, mod-

elers asked to read rule text, sometimes quite adamantly: 

W415a: I’d really like to see the production. May I see the 
production? ... It seems natural that you’d want to look at 
the production. 

Figure 3: W412b asked for “the production firing sequence” 

(below) “…within this trial” (above, highlighted).  



 

 

Not only did modelers want to see specific rules, but they 

wanted to find rules having some attributes, in order to 

identify causes of events, or to compare rules to each other. 

For example, Participant N701 noticed in the log an error in 

which the model was trying to press a non-existent key 

called ―rope‖ (the Paired model was supposed to press a 
digit key in certain circumstances). That participant then 

searched the rules‘ text for ―press-key‖, to find candidate 

rules that may have been immediately responsible for this 

erroneous action. Similarly, in Study W, a modeler asked:   

W415c: What productions do retrievals? 

These can be time-consuming questions to answer in the 

native ACT-R environment, as the information is scattered 

in several places. For example the trace shows only the 

names of rules that fired (e.g., in Figure 2 (Left), the second 

row from the bottom shows that rule DETECT-STUDY-

ITEM fired). The model source file contains rules‘ content, 

but only rules written by the modeler, not rules the model 

learns itself (through ―production compilation‖).  

Implications for Rule Information:  

(I-RULETEXT): Unsurprisingly, the modelers needed to see 

rule text. However, an interesting nuance is that modelers 
wanted to query the text of rules, both human-authored and 

model-generated, according to their attributes. This sug-

gests the need to query rule text in the same ways as states, 

events, and trials.       

B1/B2 RESULTS: RELATIONS AND SEQUENCES  

Modelers made elaborate queries that composed, filtered, 

selected, or summarized the simpler references to events, 

states, trials, and rule text discussed above. Table 2 lists the 

operations that made up these queries. 

Operations for composing queries 

Time-based and Dataflow/Slice composition 

When modelers had questions relating to the sequencing of 

events in the trace, they often needed multiple navigations 

to answer them. For example, Participant N702 restarted a 

run and painstakingly stepped forward to an ―earlier‖ time 

he was curious about. By the time he found it, his previous 

run was no longer in the scroll buffer: 

N702: Oh, great, now I've lost the previous trial and I'm 
doubting my memory... did this one fire? it was the next 
one that didn't fire? 

Study W modelers also asked for events with temporal rela-

tionships, usually starting with a known ―anchor‖ event and 

adding a related event before, after, or simultaneous with 

some other event of interest. For example: 

W412a: I want to see what productions fired at these 
times. […] or should we go back 50ms to see who pro-
duced these? 

Events or states connected by dataflow and/or control-flow 

relationships were regularly of interest to modelers. Some 

of these requests were data centric: 

W415c: So the chunks that were in declarative memory… 
what buffer were they stored in [before they were in dec-
larative memory]? 

Other, more intricate requests sought rules that had particu-

lar effects on data over time. For example to determine why 

a particular chunk was retrieved, Study N modelers worked 

backwards through the code to determine what had trig-

gered its retrieval. They essentially had to construct by hand 

a backward slice of code that affected the output of interest. 

Implications for Facilitating Composition  

(I-TIME): Modelers used a variety of temporal relation-

ships: next, previous, simultaneous, and ―in the same pe-

riod‖. Such operations need to start with all ―anchor‖ 

events, then either include or exclude instances where the 

non-anchor event is missing, in order to answer, respective-

ly, whether or what kind of events happened at nearby 
times. (I-DATAFLOW): Modelers also needed operators to 

understand how data moves from one variable to another 

through various dataflow and control flow relationships.   

Operations for summarizing  

Study N participants were drowning in data. Modelers spent 

a great deal of time scrolling through ACT-R‘s very de-

tailed logs and clicking through the debugger. Our purpose 

in pursuing support for evaluation abstractions is to allow 

modelers to hide extraneous information, leaving just the 

relevant information accessible. 

Filtering 

One ―fire hose‖ of data was the declarative memory dump. 

In the Paired task, most of the Study N modelers listed all 

the chunks in long-term memory to see if they were being 

created correctly. They drew wrong conclusions about the 

distribution of chunks in at least half the cases because 
chunks of the same type could not easily be made visible at 

the same time.  

Motivated by the flood of information overwhelming the 

Study N modelers, we provided a more general filtering 

Operators for composition 

Time constructors: 
Next, previous, 
simultaneous, with-
in-trial items 

Produce all items with the specified time 
relationships, starting with an ―anchor 
event‖, and including/excluding items with 
no secondary event. 

Slicing and dataf-
low constructors 

Produce a backward dynamic slice through 
code or a backward flow of data through 

data structures. 

Operations for summarizing, filtering, or rearranging  

Filter Limit the items shown. 

Distinct List and count distinct values of some attribute. 

Set Do set operations on distinct results. 

Sort Rearrange items in order by some property. 

Operations for comparing details 

Any, First, 
Last 

Produce any, the first, or the last, respectively, 
single item with the specified properties. 

Visualize 
 

Produce a graphic (e.g., a bar chart) of all items 
with the specified properties. 

Table 2: Query-building operations in Study W. “item” means 

an event, trial, or any other abstraction.  



 

 

capability in Study W, and the modelers used it extensively. 

Modelers filtered data in 122 of 133 episodes, and actively 

changed the way they were filtering in 32 of them.  

Ranges of values, unique values, and sets  

Filtering rows of data is not the only way to summarize it. 

Modelers often asked what range of values an attribute 

could take on, and sometimes the relative frequency of 

those values:  

W415c: Can you show me the firing rates for the produc-
tions? Uh, not rates, but the number of times a production 
was used?  

W413a: What percentage of these verbs are irregular?  

After seeing the result and listing the distinct verbs in-

volved, W413a then asked for set operations to find values 

unique to one or the other set:  

W413a: Now I want to [...] subtract the irregulars from the 
regular. I want to do a diff between the [...] set of regular 
rules and the set of irregular rules [in the trace] and see if 
there’s any rule that is unique to regular. 

Looking for things that are not there  

Abstracting away information can even be a way to directly 

test a hypothesis. Modelers sometimes asked for counterex-

amples to their hypotheses, treating an empty result as a 

confirmation: 

W412b: Is this rule firing when the trial is irregular […] 
we’re looking for an empty set. 

The result was indeed an empty table, but this exposed an 

interesting problem with such queries: its lack of data left 

no context to verify that the query had run correctly, con-

fusing both experimenter and participant.  A related prob-

lem also appeared when modelers asked to list distinct 

attribute values and their counts: in some situations mod-

elers expected them to be listed with a count of zero, but 

our experimental tool omitted such values. 

Implications for summarizing  

(I-FILTER): Modelers needed to be able to filter data in 

flexible and task-specific ways, without having to rerun the 
program. (I-DISTINCT): Modelers needed to find value 

ranges and list distinct values. They often applied these to 

filtered lists. They sometimes needed set operations. (I-

ZEROES): Counts of distinct items in filtered lists should 

include zero counts for items that did not pass through the 

filters, rather than simply omitting them. This requires inte-

roperation between ―distinct‖ and filtering features.  

B3/B4: ABSTRACT SYNTAX AND ITS VALIDATION  

Drawing from the implications in the last two sections, in 

step B3 we created a language specification in the form of 

an abstract syntax to represent modelers‘ queries. In this 

section we describe and validate it for soundness, coverage, 

and viscosity relative to our participants’ data in Study W. 

From Implications for Design to Abstract Syntax  

Our abstract syntax specifies a ―natural‖ deep structure for 

the final concrete language, which we will eventually de-

sign in Step C in accordance with these specifications. (Re-

call Figure 1.) We left the syntax of this language specifica-

tion abstract in order to avoid conflating modelers‘ needs 

for model information with their need for help with query 

syntax—an important but orthogonal issue. 

An overview, by example  

Our abstract syntax defines a query as a function that takes 

a program trace and returns a table that represents all the 

situations in the trace that matched the query. These 
―tables‖ are actually data structures that could be used as 

the basis for a variety of visualizations, although we chose 

to depict them simply as tables in Study W.  

For example, this query: 
Rules_fired filter (name=“PRODUCTION70”)  

next Buffer_goal 

begins with the term Rules_fired, which is itself a sub-
query. It returns all the rule-firing events, their times (on a 

simulation clock), and their attributes. Study W‘s imple-

mentation of this was simply a table stored within a data-

base representing the trace. (Study W had 37 such tables 

stored in the trace database.)  

The filter and next keywords in the query are operators. 

(Recall them from Table 2 in the results section.) Here, 

filter transforms Rules_fired into a new query that returns 
only the rules that fired named ―PRODUCTION70‖. Next 

then adds information to each row about the next change to 

the ―goal‖ buffer—but only if that change happens before 

the next time PRODUCTION70 fires. Next does so by 

merging corresponding rows from two result tables (filter‘s 

output table, and Buffer_goal), based on constraints on 

their timestamps. Table 3 shows formal definitions of a 
sample of common operators, including filter and next, 

along with study results‘ implications they satisfy. 

Validation  

For purposes of analysis, we divided Study W transcripts 

into 149 episodes representing participant queries and the 

 Figure 4: Validation against Study W: (a) Recoded queries vs 

wizard’s live queries. “Wrong” and “Failed” were experimen-

ter errors (b) Episodes covered by the abstract syntax (c) 

Three panel members’ ratings for 14 sample episodes. 83% 

were “right” or “fixable”. (d) Move depth: 91 moves (83%) 

were low or no viscosity. BF=“buried filters” (see text) 
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eventual satisfaction of that query by the experimenter. A 

single ―episode‖ began when the participant asked the wi-

zard to produce some output, and continued, sometimes 

with several query attempts, until both parties were satisfied 

that the output an adequate representation of the partici-

pant‘s request. Thus, each episode had either a final output 
produced in the form of a table or visualization, or none 

when a query could not be satisfied. 

We coded each episode twice: once as an ―as requested‖ 

code and once as an ―as provided‖ code. The ―as provided‖ 

code was an objective, direct translation of the query string 

the experimenter typed during the study (in Study W‘s 

query language) to the final abstract syntax. The ―as re-

quested‖ code is a subjective coding—but using the same 

abstract syntax—of what we in retrospect believed the par-

ticipant actually requested. 

Validation of Coverage 

Although it is not possible to validate coverage of the lan-

guage for the universe of modelers, we could objectively 

validate it for our Study W participant data: our abstract 
syntax was able to represent 125 (94%) of the 133 usable 

and non-repetitive episodes from Study W (Figure 4b).  Of 

the remaining eight episodes, three were vague or logically 

incoherent, four required extra complexity but had easier 

substitutes (for example a ―set difference‖ operation on two 

small groups of items), and one would have required a spe-

cial operator that we doubted would be widely used (a co-

occurrence matrix).  

Validation of Soundness  

To validate the soundness of the ―as-requested‖ recoding, 

we asked a panel of experienced modelers (drawn, with 

some overlap, from the same population as Studies N and 

W) to review the output that as-requested codes would have 

generated, for a random selection of anonymized episodes, 
and asked them to find any mistakes in our post-experiment 

analysis of what the participants had actually requested. 

We gave the panel a random sample of 14 episodes out of 

the 125 episodes that our abstract syntax aims to cover (see 

the ―coverage‖ subsection above). For context we also gave 

them relevant transcript segments and prior screenshots to 

establish context, and a summary sheet giving statistics 

about the model run. In each case, the panelists were asked 

to indicate whether the query had been carried out correctly 

per the participant‘s wishes.  

The panelists were given five options, and a free text area to 
explain their answer. The five options were ―right‖, ―fixa-

ble‖ (only rearrangement or simple arithmetic would be 

needed to fix it), ―some missing‖, ―right assuming…‖ (pa-

nelist did not have enough information about the model to 

be sure), and ―wrong‖. 

After checking modelers‘ assumptions in the ―right, assum-

ing‖ category and changing the code based on the assump-

tion when possible, on average the panelists rated 11.6 

(83%) of the 14 queries as either ―right‖ or ―fixable‖, as 

shown in Figure 4c, and all but one episode was rated as 

―right‖ or ―fixable‖ by at least 2 panelists. 

We also compared the ―as-requested‖ codes directly to the 

―as-provided‖ codings, which participants helped refine 

during the study. As Figure 4a shows, in 106 (88%) of the 

121 non-refused episodes (12 were requests for rule text), 
the two codings were substantially the same, in the sense 

that the as-provided query produced at least enough infor-

mation that a modeler could in principle use it to produce 

the as-requested query‘s results by rearranging data or 

doing simple arithmetic. 10 episodes (7%) were clear expe-

rimenter errors, and in 5 (4%), the experimenter could not 

produce a response. 

Validation of Low Viscosity  

In Study W, modelers often evolved their queries incremen-

tally rather than invent them from whole cloth. We would 

like to avoid the situation where a modeler adds and adds to 

a query, then wants to change an earlier decision, and has to 

undo all those layers to make the change; in other words, 

we want low viscosity [7]. 

To measure viscosity, we tightened our focus to moves ra-

ther than episodes. In the realm of strategy literature, Bates 

[2], defined moves as ―an identifiable thought or action that 

is part of information searching‖. Thus, in this study, we 

defined each move to be a single addition, deletion, or 

Operator: Implication ID (see Results sections) Definition 
filter: (I-FILTER)  
Given a query and some criterion, returns a more limited variant of the 
original query that matches the criterion. (See text for example) 

Given: query Q returning a set of n tuples of k tagged attributes, { (a1:Q.vj-

1,… ak:Q.vjk) | j=1..n}, criterion as the s
th

 attribute tag of Q 

filter (Q,as=vs) returns: { (a1: Q.vj1, … ak: Q.vjk) | j=1..n such that Q.vjs = vs}.   

next/prior/simul: (I-TIME)  
Pair up two event queries into a single query returning data about pairs 
of events, one after the other. (See text for example ) 

Given: event queries E and F returning {(a1: E.vj, time: E.tj) | j=1..nE} and 
{(a1: F.vk, time: F.tk) | k=1..nF} 

next(E,F) returns: {(time:E.tj, a1E:E.vj, timeE:E.tj, a1F:vk, timeF:F.tk) | 
E.tj<F.tk≤E.tj+1 and F.tk-1≤E.tj when k>1}.   

distinct: (I-DISTINCT)  
Produces a list of the distinct values that some attribute of a query result 
took on, and a count of each value’s occurrences.  

Given: query Q, whose attributes include a1…k then  

distinct(P,a1..k) returns: { (a1..k:Q.v1…k, countQ:q ) | for each distinct tuple of 
values Q.v1…k that co-occur together, exactly q times. } 

segment: (I-TRIAL)  
Breaks a trace into subtraces (usually, trials) using an event query to 
specify the boundaries between each subtrace (trial)”  

Given: event query E returning {(a1:E.vk, time:E.tk) | k=1..n}  

segment(E) returns: {(segE:k, time:E.tk, endtime:E.tk+1) | k=0..n} where 
t0=0 and tk+1 is the last timestamp in the trace. 

Table 3: A sample of the most common query operators. The 

set notation shows the table that the query returns when ap-

plied to a trace. ak:vk refers to a value vk in a column titled ak 

in the query’s output table  



 

 

change of operators in the formal codings, and we dissected 

each pair of adjacent episodes into atomic moves necessary 

to explain the difference between them. 

Of the 149 episodes, 55 were not analyzable as moves from 

the previous query: either one or the other had no coding, or 

the requests had so little in common that it seemed unlikely 
a modeler would want to transform one to the other in this 

way. Of the remaining 94 episode pairs, we decomposed 6 

into 3 moves, 19 into 2 moves, and 66 were single moves, 

for a total of 110 moves. 

We operationalized viscosity by classifying moves as shal-

low, low-viscosity moves, when only the outermost layer of 

the abstract syntax tree was modified; and deep, high-

viscosity moves otherwise. As shown in Figure 4d, 91 of 

these 110 moves (83%) were shallow.  In fact 17 of those 

(15%) required no changes at all. 19 were deep moves. Our 

intention is that language designer tasked with building a 

usable, fluid debugging interaction language could rely on 
the abstract syntax to drive the affordances offered: e.g., 

menu options to add, remove, or change the ―outermost‖ 

layers of the query could map to the most common ways 

Study W participants sequenced their queries. Our 83% 

viscosity score, while not ideal, seems reasonable for at 

least providing a good basis for such interaction design. 

Although we did not find an elegant abstract syntax that 

could improve viscosity further, an analysis of the 19 deep 

queries reveals that 13 of them fell into an information-

seeking strategy in which modelers repeatedly modified 

filters underlying distinct or detail operators to see how the 

query results changed. Because of this strategy, and other 

interactions between these operators (see I-ZEROES and I-

DISTINCT above), some of the viscosity could be further 

reduced in the user interface design by providing affor-

dances to directly manipulate this class of ―buried‖ filters.   

DISCUSSION 

We expect our debugging language to be most useful for 

reactive systems like ACT-R, RML, and EPIC, in which 

behavior is tightly (and often, probabilistically) driven by 

the timing and content of environmental inputs. In such 

systems, modelers‘ analysis of runtime behavior in concert 

with environmental conditions is critical. We designed our 

language to be relatively modeling-language agnostic, and 
are now starting a field study with a prototype debugger for 

RML [5] based on the language. (RML is a cognitive mod-

eling language being developed at the Air Force.)  

A methodological question we wrestled with was how to 

validate replicability of the complex coding of Study W 

episodes. It seemed unlikely that an inter-rater reliability 

scheme would work: two researchers would not likely use 

the abstract syntax in precisely the same way to represent 

modelers‘ informal programs. Our choice was to validate 

soundness, coverage, and viscosity instead of replicability. 

In surveying other researchers‘ work, we found the question 

of validating replicability in NP studies to be a common 

problem. As Table 4 shows, NP researchers have been solv-

ing this by validating other properties of their coding 

schemes. Ko et al., for example [10], validated the distribu-

tion of codes by conducting a survey of expert program-
mers to check the work a single coder had done. Pane et al. 

[16] also validated distribution by averaging ratings from a 

small panel of domain experts (experienced programmers) 

tasked with assessing aspects of the language and structure 

in children‘s handwritten solutions to programming prob-

lems. Little et al. [12] checked usability and ease of produc-

tion with a summative validation of whether users with lit-

tle training could produce Chickenfoot queries and accom-

plish tasks with the tool. One contribution of this paper, 

then, is the identification of the choices of language proper-

ties that different NP validation methods can evaluate.  

NP+ may be useful beyond our particular case, and we hope 
to use it in other design projects in the future. We envision 

it as being particularly appropriate for language designers 

uncomfortable making the leap from NP‘s Step B, under-

standing the target audience, to Step C, designing the new 

system. Such a leap requires language designers to have a 

level of user-centered design experience and a comfort with 

the target domain that may not always be practical. For ex-

ample, we envision NP+ as an aid to programming lan-

guage specialists who know how to build an abstract syn-

tax, but who are looking for some user-centered basis for 

making technical choices. For our purposes, and perhaps for 
other researchers, the path from Step B‘s ―implications for 

design‖ to Step C‘s concrete language design seemed to 

rely on too much ―magic‖ to translate into correct and fluid 

designs with broad coverage, and Step D seemed too long 

to wait to spot this kind of problem. However, we have not 

validated the methodology beyond this initial case study, 

and future  research is needed to evaluate its generality. 

Language/Tool Validation method Property validated 

Whyline for Alice 
[9]  

Triangulation; subjective 
inter-rater coding com-
parison 

Support for cogni-
tive breakdown 
theory 

Contributed to 

Whyline for Java 
[10] 

Survey of domain ex-

perts 

Relative importance 

of information seek-
ing goals 

Chickenfoot for 
end-user web 
scripting [12] 

Usability study Usability and ease 
of production 

Hands language 
for children [16] 

Experts working inde-
pendently, ratings aver-

aged together 

Reliability of re-
searcher classifica-

tion 

This paper (de-
bugging for cog-
nitive modelers) 

Compare codings,  count 
codings,  
expert panel,  
depth-check moves 

Coverage, sound-
ness relative to 
dataset, and viscosi-
ty.  

Table 4: Natural Programming practitioners have validated a 

variety of properties, using a variety of methods. This paper 

is at the bottom of the table.   



 

 

CONCLUSION  

In this paper we empirically investigated cognitive mod-

elers debugging to derive a design specification for a de-

bugging interaction language for them. Some interesting 

insights about this population‘s debugging needs were: 

 Modelers needed to refer to states by their endpoints, 

or events that occur during the state. 

 Modelers preferred to ―anchor‖ temporal relationship 
queries starting from a known set of events. 

 They needed results that integrated source code (origi-

nal as well as learned rules) and runtime data together 

into the same query results. 

We then validated our design specification in several ways, 

showing that, in the context of our collected data, our de-

sign was reasonably complete and sound, and was a low-

viscosity representation of the query evolution paths that 

modelers followed.  

Finally, we used our investigation as an initial case study in 

NP+. Replacing the leap of design expertise in the NP 

process with precise, explicit steps, NP+ helped us ground 
our language design in empirical evidence and validate 

along the way. Although some HCI researchers are com-

fortable moving directly from formative empirical results to 

a language design, for us the more explicit roadmap of NP+ 

helped us incrementally monitor our progress towards 

meeting the needs of our users.  
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