

Does my model work? Evaluation abstractions of cognitive modelers

Christopher Bogart1, Margaret Burnett1, Scott Douglass2, David Piorkowski1, Amber Shinsel1
1Oregon State University and 2Air Force Research Laboratories

{bogart, burnett, piorkoda, shinsela}@eecs.oregonstate.edu
scott.douglass@mesa.afmc.af.mil

Abstract

Are the abstractions that scientific modelers use to
build their models in a modeling language the same
abstractions they use to evaluate the correctness of
their models? The extent to which such differences ex-
ist seems likely to correspond to additional effort of
modelers in determining whether their models work as
intended. In this paper, we therefore investigate the
distinction between “programming abstractions” and
“evaluation abstractions”. As the basis of our investi-
gation, we conducted a case study on cognitive model-
ing. We report modelers’ evaluation abstractions, and
the lengths they went to in evaluating their models.
From these results, we derive design implications for
several categories of persistent, first-class evaluation
abstractions in future debugging tools for modelers.

1. Introduction
Solving a problem can be a very different task from

evaluating the correctness of your solution, potentially
requiring a different set of abstractions. However, pro-
gram comprehension and debugging tools are often
built with the implicit assumption that the abstractions
programmers use to evaluate a program (evaluation
abstractions) are the same as the abstractions they use
to create a program (programming abstractions).

The central question we investigate in this paper is
whether distinct evaluation abstractions are an impor-
tant aspect of programmers’ evaluation and debugging
practices. We are particularly interested in this issue
for programmers who do not already have evaluation
tools (test suite management tools, etc.) that they per-
ceive to be well-suited to their needs. As Segal shows,
one such population is scientific modelers [20].

The possibility of modelers building and using
evaluation abstractions that are different from their
programming abstractions raises several issues. If there
are important evaluation abstractions that do not match
a model’s programming abstractions, what are they?
What do modelers currently have to do to construct,
use or reuse such evaluation abstractions? Are there
implications for evaluation-time tools on how to sup-
port such abstractions?

In this paper, we shed some light on these issues
through a case study on six cognitive modeling pro-

jects. We spent a month listening to a group of cogni-
tive modelers at the Air Force Research Labs in Mesa,
Arizona as they debugged their models and discussed
them with their colleagues. Our goal was to gather
cross-cutting commonalities in the ways these cogni-
tive modeling cases work with abstractions in evaluat-
ing their models.

2. Cognitive Modelers’ World
In this paper, we use the term modeler to refer to

anyone who builds a computational model to simulate
and understand phenomena in the world. One example
is cognitive modelers modeling cognitive activities in
the human brain.

The cognitive modelers in our study used ACT-R
[2]. This modeling language is a particularly appropri-
ate platform for studying the differences between
evaluation and programming abstractions, because
ACT-R models are (even) more unpredictable than tra-
ditional imperative programs.

Unpredictability is useful for investigating evalua-
tion abstractions because an unpredictable system has a
large gulf of evaluation [17]—there is a large distance
between telling the system what to do and determining
the correctness of its response. For example, modelers
often do not force production rules to fire in a particu-
lar order, but instead attempt to set rule preconditions
such that they will become available at appropriate
times in a task flow. Verifying that this in fact hap-
pened is a non-trivial subtask for modelers. The diffi-
culties modelers have arising from such unpredictabil-
ity provides a useful magnification. This is because, as
Ljungblad and Holmquist point out, studying the prac-
tices of marginal communities can give insights into
effects that still apply, but are harder to spot, in a more
general population [14].

Modeling in ACT-R features unpredictability in two
ways. First, model behavior critically depends on the
firing of production rules, and the storage and retrieval
of data structures called chunks. The selection and tim-
ing of both of these ACT-R entities are governed by
calculations involving many factors, and the results are
often difficult to predict. Second, because the human
cognition being modeled is flexible and adaptive, cog-
nitive modelers often write models whose decision-

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI

49

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI 10.1109/VLHCC.2010.16

49

making is highly reactive to the environment, rather
than writing models to carry out fixed plans.

3. Related Work
Evaluation abstractions relate to expectations about

what programs will do. Other researchers have consid-
ered the idea of eliciting information about users’ ex-
pectations for use in debugging. WYSIWYT [4] for
spreadsheets, Woodstein [23] for web transactions, and
Declarative Debugging [16] for Prolog support Boo-
lean expectations. That is, they let users flag values as
right or wrong. (These systems use backward slicing
through a growing set of these user judgments to nar-
row down possible causes of program errors.) Other
systems have elicited expectations about correct values
(either explicitly or in the form of a “Why not?” ques-
tion) but only use them for a single recommendation,
then discard them: these include the Whyline [12] for
Java, the ACT-R debugger [3], GoalDebug [1] for
spreadsheets, and Kulesza et al.’s technique [13] for
end-user debugging of Bayesian classifiers.

Beyond Boolean judgments, some systems allow
more elaborate expectations. Some programming IDEs
such as Eclipse and Visual Studio allow users to enter
arbitrary expressions in a “watch window” to display
calculated values while debugging. For example a user
debugging a program involving heights and weights
could monitor body mass index (weight/height^2),
even if the source code contained no such calculation.

More elaborate evaluation abstractions are those
used for runtime verification, in which complex state-
ments of temporal logic are continuously checked
against the state of a running program. Colin [5] gives
examples of runtime verification used to monitor the
geometric shape of groups of autonomous flying robots
and the properties of routing protocols. This special-
ized technique is not yet widely used; Colin suggests
this is because runtime verifiers slow programs down,
but usability may also be a factor.

In the domain of modeling, Zeigler [26] defines an
experimental frame as the set of manipulations and
measurements that a modeler chooses to adopt as a
standard of validity. He distinguishes replicative valid-
ity, in which a model mimics a real system, predictive
validity, in which models match new data they were
not specifically adjusted for, and structural validity, in
which models internal parts match the parts of the real-
world system. The modelers we observed were primar-
ily concerned with replicative validity and to some ex-
tent with predictive validity.

For cognitive modeling specifically, there is ongo-
ing research into abstractions for modelers, but it is
specifically directed at creating new languages for
cognitive modelers [18], not at ways of evaluating and

debugging them. These include HLSR [9], a high-level
cognitive modeling language; Hank [15], a GUI inter-
face for the SOAR cognitive modeling language; G2A
[19] and HTAmap [7], both of which translate high
level task descriptions into ACT-R; and CogTool [8],
an ACT-R-based visual language for simulating user
interface interaction. Finally, SimTrA [7] creates
summary statistics of eye tracking data from cognitive
models and outputs them into convenient tables in R.

In contrast to these works, we do not present a new
tool or language, but rather aim to harvest abstractions
and expectations directly from the intended population
in order to make design recommendations for better
debugging and program comprehension tools.

4. Case Study Design and Methodology
Our investigation method was the case study, the

method of choice for investigating a contemporary set
of events over which the investigator has little or no
control [24]. Our study included six cases, each of
which was a modeling project. Participants were six
cognitive modelers working on these projects, with ad-
vanced degrees in Psychology, Computer Science, or
Cognitive Science. These participants were civilian
scientists with the Air Force Research Laboratories.
We studied these modelers over the course of a month.

The elements of interest were evaluation abstrac-
tions. Evaluation abstractions are judgments, inten-
tions, or beliefs about model behavior that, like other
kinds of abstractions, ignore or hide details, usually to
capture some kind of commonality among different
instances. Given this definition, our research questions
were:

RQ1: What kinds of evaluation abstractions do
modelers have?

RQ2: How do modelers currently create, use, and
reuse their evaluation abstractions?

RQ3: What operations do modelers need to be able
to perform on evaluation abstractions?

4.1 The Models and Modelers
The first four cases were the following projects

(anonymized here):
VISLANG was Steve’s doctoral thesis work to

demonstrate the impact of visual scenes on language
comprehension. It models eye movements when a par-
ticipant listens to a description of an airplane’s location
while looking for the plane on the screen. VISLANG’s
source code contained about 64 production rules. It can
learn more production rules over the course of a run.

Gary was in charge of PILOT, a large component of
a project to build a cognitive model that simulates fly-
ing an Unmanned Aerial Vehicle (UAV). Gary’s focus
at the time of the study was on the question of how

5050

PILOT should determine when to check the dashboard
controls as it flew the plane. PILOT had about 160
production rules and 30 chunk types.

John and Ellen were linguists working on
LANGCOMP, a language comprehension model for a
UAV pilot. The model interpreted incoming text chat
from human teammates, and updated the model’s un-
derstanding of what destination, airspeed, and altitude
the teammates were requesting. LANGCOMP had
about 540 rules and 360 chunk types.

The SCANTYPE model (Figure 1) had just been
handed from Mitch to Matt. It modeled humans per-
forming a simple task: given a symbol, search for it on
a screen, then press the right key on a keyboard. The
model had alternate strategies for scanning and typing,
and learned to use the more efficient strategies over
time. SCANTYPE had 19 rules at the beginning of the
study, and by the end, Matt had added 6 more. It had
four chunk types.

We added two cases that were exercises from the
ACT-R tutorials [3]: ZBRODOFF and SIEGLER.
These cases served as sources of normative modeling
expectations because they each contained a set of
stated expectations to guide new modelers into build-
ing a new model or enhance an existing model.
SIEGLER predicted the distribution of answers 4-year-
olds made [22] when asked to add small integers.
ZBRODOFF modeled a “letter addition” experiment
[25]. For example, given “A+4” it should respond with
“E”, which is four letters later in the alphabet.

4.2 Data and Coding Procedure
The data about the models were model source code,

model runs, model output, and model visualizations.
The data about the modelers were recordings, notes,
and transcripts from two presentations by modelers de-

scribing their work to other cognitive modelers in the
group; from three working group meetings; from three
interviews; and from three one-on-one job shadowing
sessions with modelers in the style of [11].

Using these data, two researchers working together
coded transcript samples from each of the projects into
the evaluation abstractions shown in the next section’s
tables. For modeling projects, we coded the first ten
minutes of each transcript, starting where the modeler
began concretely discussing a model or behavior. For
the tutorials, we coded about 200 lines from the “prob-
lem” section of the lesson where a model was de-
scribed with the reader asked to modify it in some way.

5. Results
Our first research question was to identify and cate-

gorize the different types of evaluation abstractions in
the different modeling projects. We categorized them
as Data Structure Abstractions, describing relation-
ships among data, Time Abstractions describing the
sequencing, choosing, and grouping of events over
time, and Statistical Abstractions with descriptive sta-
tistics about model behaviors.

As Figure 2 shows, modelers used all of these ab-
straction categories in all projects, although the mix of
categories varied from project to project. The figure
also shows patterns of co-occurrence both within and
across the categories.

5.1 Data Structure Evaluation Abstractions
As we pointed out in the introduction, existing pro-

Figure 1: A SCANTYPE task screen as the participants
saw it in the original experiment, as the model sees it (the
red circle is where ACT-R is attending), and as ACT-R’s
visual location buffer sees it.

Figure 2: (Left:) Percentage of evaluation abstractions in
projects’ transcripts. Dark=Data; medium=Time;
light=Statistical. (Right:) Co-occurrence of evaluation ab-
stractions within and across categories. Nodes with thick
borders occurred most frequently, and edge thickness
indicates co-occurrence frequency. Low co-occurrences
are not shown.

5151

gramming environments are built on the assumption
that programmers evaluate their programs using their
program’s data structures. Our modelers did take ad-
vantage of these, e.g., using the debugger to explore
the chunk data structures that existed in their models.
However, the difference between the data structures in
the model and the five data structures (Table 1) model-
ers needed to evaluate was large, requiring translation.

5.1.1 The types of evaluation data structures
Table 1 shows the five types of data structure

evaluation abstractions we found, and Figure 3 shows
their frequency. We coded record, lookup (like a hash
map or lookup table), list, and tree when the structures
(as described by modelers verbally) suggested resem-
blance to traditional programming data structures of
these names, and spatial when modelers related data to
locations in visual space.

Spatial evaluation abstractions were particularly in-
teresting because they cut across programming abstrac-
tion boundaries, relating things to each other geometri-
cally in visual space. Screen regions, goals, remem-
bered chunks of knowledge, and even production rules
all potentially related to regions of the visual space.
Figure 1 shows, at top right, a screen that was shown to
SCANTYPE, and at bottom, how SCANTYPE per-
ceived it as lists of items with coordinates. However,
when modelers copy those numbers into other loca-

tions, the debugger does not know the numbers are
meant by the modeler as coordinate pairs, so modelers
can view them only as numbers. Thus, as in other lan-
guages, if modelers want to know how items relate
spatially, they must do the work to graph them.

5.1.2 The translation problem
The modelers’ work to translate from model data

structures to evaluation data structures was hard, but
the mismatch leading to the translation is necessary.

First, consider the work to do such translations. For
example, John wanted to know why one word in
LANGCOMP’s large lexicon had been retrieved in-
stead of another. In the model, each word in the lexi-
con was stored as an ACT-R chunk. But John treated
this mass of chunks and the properties of ACT-R’s
chunk retrieval system as a lookup table, in which the
choice of chunk to retrieve depended on the contents
and computed “activation values” of all the chunks that
were candidates for retrieval.

Since John did not have evaluation support for this
table-like lookup perspective on the data, his recourse,
if he had decided to pursue answering his question,
would have been to scroll though a long list of chunks
by name, and click on each individually to view and
compare their activation levels.

The mismatch generating such translation work is a
necessary abstraction mismatch. Because the goal of
cognitive modeling is to model in terms of cognitive
theory, evaluation data structures cannot be program-
ming abstractions inside the model unless some cogni-
tive theory proposes them. Instead, these data struc-
tures can exist only in tools outside the model.

5.1.3 Abstractions of Abstractions
The examples discussed so far each examined a sin-

gle kind of evaluation abstraction in isolation, but as
Figure 2 shows, these abstractions were sometimes
compounded together into more elaborate structures.

For example, in explaining SCANTYPE’s behavior,
Matt identified a visual attention shift by composing a
spatial comparison (between the model’s gaze and a
landmark he pointed to on the screen), with a time se-
quence abstraction (three events in sequence: a shift, an
arrival, and a read; explained in Section 5.2):

Matt: OK, now it's gonna attend a probe, … it's
gonna shift visual attention there, its visual at-
tention arrives, we're gonna read it.

These compound abstractions took more work for
modelers to evaluate because they sometimes required
extra navigation among different logs and visualiza-
tions. For example whenever the SCANTYPE model
“saw” a symbol, it logged the creation of a chunk with
a name like VISUAL-OBJECT1 (in the second
VISION line in Figure 4, for example). The trace

Figure 3: Counts of Data Structure codes.

Definition and Example
Record: Item made up of multiple parts
e.g., Gary: So there are productions that make this deduc-
tion, and stick it into the situation superchunk.
Lookup Table: Items retrieved by key or matching content
e.g., Ellen: If you say that the third letter is too important,
then that’s going to mess up what is retrieved.
List: Info structured as first, next, next, last
e.g., Matt: In the original task they’re always presented
1,2,3,4,5,6,7,8,9 in the exact order every time
Spatial maps: Information tied to visual space
e.g., Matt: In other words this one [pointing to the screen],
[...] it would find it very quickly.
Tree: Hierarchical Knowledge
e.g., Ellen: I have a feeling that “meet” was retrieved; it just
didn’t make it into the tree.
Table 1: Data Structure Evaluation Abstractions, in order of
frequency.

5252

shows when this object was created, but to find out
where it was, Matt would have had to run the debug-
ger, tell it to skip forward to the appropriate time
stamp, and open a chunk listing to see the coordinates
of this object.

5.2 Time Evaluation Abstractions
Time clearly mattered to our modelers when they

evaluated their models. Recall from Figure 2 that all
six projects used time evaluation abstractions. Time
constraints were not explicit in any of the models’
source code; instead, modelers used time abstractions
to check high-level patterns as emergent behavior.
Gary explained why he did not program time explicitly
into his model during a Q&A after his talk:

John:… you can have a declarative memory
chunk that's actually a sequence of goals that al-
lows you to prefer—

Gary (interrupts): Yeah, but that's the type of
thing I want the model to learn though, this se-
quence of goals; I don't want to build that in.

5.2.1 Manually sifting the sands of time
When evaluating even simple sequences of events,

the time abstractions of interest to our modelers were
often buried in the logs and visualizations, so modelers
had to do manual pattern matching work to find them.
We saw all three of Matt, John, and Ellen reading
through event logs like the one in Figure 4. The traces
were very long, and all three modelers used a combina-
tion of scrolling and textual search to find items of in-
terest. Modelers sometimes lost their place, because the
interesting events were not always close enough to-
gether in the log to see on the screen at the same time.

These abstract sequences of interest had structure:
they could not be gleaned by simply filtering one con-
crete event type of the vast number of events that oc-
curred in the model. Gary for example described how
PILOT changed airspeed:

Gary: You change airspeed using this particular
piece of the interface, and you hit enter when the
value is at the level where you'd like it to be.

Changing the airspeed, then hitting enter, was a short
sequence of model actions that Gary
expected to occur many times
throughout a model run. For a tool
to have helped Gary check this, it
would have needed to support the
notion of a sequence abstraction
(defined in Table 2), so that it could
find events that mattered, but only if
they occurred in sequence with all
intervening but unrelated details
abstracted away.

5.2.2 Tracking models as they
strategize

Although Figure 5 shows that the
sequence abstraction was the most
frequently observed, the four strat-
egy-related abstractions (strategy,
choice, interrupt, and simult), were
even more common if considered as
a group. Strategies were activities
of groups of rules that shared a

0.216 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.216 PROCEDURAL CLEAR-BUFFER VISUAL
0.216 PROCEDURAL CONFLICT-RESOLUTION
0.290 VISION Encoding-complete CHAR-PRIMITIVE2-0-0 NIL
0.290 VISION SET-BUFFER-CHUNK VISUAL VISUAL-OBJECT1
0.290 PROCEDURAL CONFLICT-RESOLUTION
0.359 IMAGINAL SET-BUFFER-CHUNK IMAGINAL PAIR0
0.359 PROCEDURAL CONFLICT-RESOLUTION
0.395 PROCEDURAL PRODUCTION-FIRED ENCODE-INCORRECT-SYMBOL...

Figure 4: Part of the event trace from a run of the SCANTYPE model. Col-
umns indicate the simulation clock time, the module responsible for the event,
and a description of the event.

Figure 5: Time evaluation abstractions.

Definition and Example
Sequence: B will occur after A
e.g., Matt: It starts at the far left, it shifts attention to [the] square, [to the] plus, to the
three, to the U; just left to right serially, until it finds the one it’s looking for.
Strategy: Joint activity of related rules
e.g., ZBRODOFF: subjects have to engage in counting.
Choice: Either A or B will happen
e.g., John: I have a dual-path capability. I can either retrieve this thing from memory
[…], assuming I've already created one and I can just retrieve it. Or I can create it.
Span: Time interval
e.g., Steve: And then after a short interval there’s an indication of the correct or ac-
tually described reference
Interruption: Stopping or pausing a strategy
e.g., Gary: You can build very generic productions. Things like interruption produc-
tions. So if there is a task goal, then change goals, and so you could be in the mid-
dle of a goal and this thing could fire, and you'd cut out in the middle of the goal
you're working on and you're starting something new.
Simultaneous: Interleaved strategies
e.g., Steve: I could have the two separate threads in the model, and then basically
the contest for resources would take care of all of the interleaving.

Table 2: Time Evaluation Abstractions in order of frequency

5353

common purpose (although the rules were not grouped
within ACT-R, which simply picks one rule at a time
and fires it). Some modelers described strategies as
threads that were “running” when the state of the
model was such that their productions would happen to
be triggered. Strategies could be interrupted by other
rules preempting them, be simultaneous when rule fir-
ings were interleaved, or make choices when one rule
was selected over another. Modelers confirmed that
strategies were active by checking whether the rules
fired. Mitch, for example, added a statement to
SCANTYPE to print “Continuing search for (feature)”
every time the “encode-incorrect-symbol-quickly” rule
fired, so as to gather evidence that the “quick” visual
scanning strategy was running.

5.2.3 Persistence
Some evaluation abstractions were so important that

modelers formalized and kept them as part of their pro-
jects, in the form of tools or documentation. For exam-
ple, Gary had a particularly formal way of describing
such sequences. He told us that he originally designed
PILOT using a formal task description language,
NGOMSL [10]. Unfortunately, Gary’s NGOMSL de-
scription existed only as documentation; the only way
to check that it was being followed by PILOT was very
detailed inspection of numerous model runs.

Steve devised an elaborate solution to the problem
of evaluating high-level sequence patterns. His model
generated x,y coordinates of eye movements at exact
points in time, but Steve wanted to know about certain
overall patterns of movement, such as looking at or
near a particular region of interest, then looking away.
So he created a custom visual finite state automaton
language for recognizing sequences of eye movements,
which he could apply to eye tracking data in his model.

Gary and Steve went to considerable effort to con-
struct these persistent, formal artifacts. This suggests
that evaluation abstractions exist not just as ad hoc
evaluations, but may be something modelers want to
maintain and reuse over multiple runs.

5.3 Statistical Evaluation Abstractions
Perhaps the most distinct from traditional program-

ming abstractions were the statistical evaluation ab-
stractions. These were ways of evaluating model per-
formance in terms of aggregation, trend, or fit to hu-
man data (Table 3 and Figure 6). Coded transcripts for
all except one of the projects were at least 20% about
statistics.

Unlike the other abstractions, in which modelers
were able to use existing outputs to perform their
evaluations (even if doing so this way was often very
inefficient), evaluating in terms of statistical abstrac-
tions required the modelers to write and turn to other
software. Specifically, they had to write Lisp code to
collect numeric data and either process it in Lisp or ex-
port it to external files to process with other software.

For example Matt talked about how the
SCANTYPE model worked in terms of trends:

Matt: I think [Mitch]'s hypothesis was that peo-
ple get more familiar with what they're searching
for and how to respond with the keyboard.

Matt was referring to code Mitch had written to
count executions of quick and slow versions of each
searching and keyboarding strategy, in order to graph
the shifting proportions of these events over time. The
decrease of one line and increase in the other was how
he determined that the model successfully modeled a
trend from one strategic choice to another over time.

Compared to the other types of evaluation abstrac-
tions, statistical evaluation abstractions seemed to exist
in later phases of model development. We observed
modelers discussing them in their presentations more
often than when they were working directly with the
models. Our interpretation is that modelers wanted to
evaluate in terms of individual data structures and time
behaviors before trusting their models enough to
evaluate in terms of aggregates, trends, and fit.

This interpretation is supported by how
models’ sizes related to the use of statistical
abstractions. The smallest projects
(ZBRODOFF, SIEGLER, and SCANTYPE)
talked about statistics most often, perhaps be-
cause their smaller size meant they simply
had less data structure and sequence detail to
evaluate. At the other end of the size spec-
trum, the largest project, LANGCOMP,
talked very little about statistics. (Refer back
to Figure 2 for project-by-project use of the

Definition and Example
Aggregate comparison: Maxima, averages, deviations, count, frequency
Matt: So it has to search through on average half the symbols.
Matt: So 12 productions are going to fire before you can find some reward.
Fit/Validation: Comparison with human data
Gary: The number of clicks is almost identical between average human
behavior and average model behavior.
Trend: Change over time
Steve: The only difference is that they’re starting to respond more rapidly.

Table 3: Statistical Evaluation Abstractions in order of frequency

Figure 6: Counts of Statistics Evaluation Abstractions

5454

different abstractions.)
Statistical evaluation abstractions were built on

other evaluation abstractions. For example, the caption
in Figure 7 details how Steve interrelated different
evaluation abstraction types in VISLANG. A count of
eye movement events was an aggregation evaluation
abstraction, and their trend line from trial to trial
amounts to a trend abstraction of that aggregation.
Figure 2 shows that statistical evaluation abstractions
were also linked to the time and data abstractions re-
cord, span, spatial, and strategy.

6. Implications for Design
As our results show, modelers used numerous

evaluation abstractions that were often not the same as
their programming abstractions. Further, they ex-
pended hours of effort to evaluate in terms of these
evaluation abstractions. The complexity and pervasive
use modelers made of these abstractions suggest a need
for new powerful but low-overhead scripting capabili-
ties within debuggers.

As one example illustrating this need, in ACT-R's
Lisp environment, programmers can code ad-hoc
analysis functions from scratch. However, although a
few of our modelers used this device, they did not all
have the expertise for this, and it still left many of their
evaluation needs unmet.

If a debugging tool were to support such a language,
what should it enable modelers to do? The evaluation
abstractions we observed shared a common set of op-
erations that modelers attempted to perform on them
(Table 4). These operations correspond fairly well to
the kinds of operations advocated for abstractions in
other settings (e.g., Shneiderman’s proposals for in-

formation visualization research [21]), which suggests
that modelers’ evaluation maneuvers are consistent
with other situations in which full-fledged support for
abstractions is accepted as being desirable.

Compare: Modelers went to great lengths to com-
pare evaluation abstractions, both within and between
models. They did so by searching manually through
traces and visualizations looking for expected patterns
of events, by using “diff” tools for regression testing,
and by using statistical packages to compare data for
validation. Steve’s automata language from Section
5.2.3 gives one possible direction for future support of
comparing evaluation abstractions

Visualize and Navigate: Modelers created visualiza-
tions of abstractions in every presentation they gave,
especially statistical abstractions. In debugging, mod-
elers often used them to spot, and sometimes compare,
phenomena that were unforeseen, too costly, or too in-
formal to check more precisely. The modelers incurred
high costs from attempting to navigate among visuali-
zations and the abstractions themselves.

Compose and Filter: Modelers composed evaluation
abstractions from combinations of other evaluation ab-
stractions and programming abstractions. Conversely,
modelers sometimes filtered to exclude irrelevant ma-
terial. When their programming abstractions were not
good matches for the modelers’ desired composition
and filtering, it became costly for modelers to check
their expectations.

Persist: Persistence was a prerequisite of the regres-
sion testing modelers did, but modelers also repeatedly
looked for the same type of information in ad hoc
evaluations. The regularity with which they did so
suggests that their evaluation practices were integral
parts of their modeling projects.

These operations suggest a base set of functionality
for designers to support when creating debugging or

Compare: Comparing evaluation abstractions within
models, between models, and/or to their own expec-
tations.
Visualize: Viewing visual patterns within and be-
tween their evaluation abstractions.
Navigate: Moving between different parts of an
evaluation abstraction or between parts of different
evaluation abstractions.
Compose: Composing evaluation abstractions using
combinations of other evaluation abstractions and
programming abstractions.
Filter: Removing irrelevant details of an evaluation
abstraction, temporarily or permanently.
Persist: Saving and reusing the same evaluation ab-
straction repeatedly over multiple runs or multiple
models.

Table 4: Operations on evaluation abstractions.

Figure 7: Steve’s VISLANG graph combines evaluation
abstractions of time (sequence: blue stripes and red
dashed line are words heard and mouse clicked; span:
width of stripes), data structure (spatial: colors of trend
lines indicate screen regions of eye movements), and
statistics (trend: colored trend lines; aggregation: verti-
cal axis represents frequency of eye visits per region).

5555

program comprehension tools for modelers. Without
such support, modelers expended considerable effort to
perform these operations manually or with tools they
had to create themselves.

7. Conclusion
We have described a case study involving six cogni-

tive modeling projects, investigating the expectations
and corresponding abstractions that modelers have
when they evaluate their models. We discovered a
richly interconnected network of evaluation abstrac-
tions involving data structures, time sequences, and
statistical aggregation. We further found that:
• Evaluation abstractions were varied in form; some

mimicked common programming abstractions like
sequences and trees, while others, like strategies
and spatial layouts, were new.

• The abstractions were not just ad hoc descriptions
of modelers’ roving explorations, but patterns of
persistent interest, as much a part of the modeling
project as the code itself.

• Statistical analysis and debugging were separate
phases of modeling, yet showed deep ties. The data
on which modelers ran statistics for validation were
the same entities they used for “up close” compre-
hension and debugging.
The evidence reported here of mostly unsupported

evaluation abstractions demonstrates a gap in support
for evaluation abstractions needed by cognitive model-
ers. We suspect this gap is not unique to this popula-
tion alone. We therefore hope this line of research will
inform the development of modeling environments that
allow a wide range of modelers to keep better tabs on
whether, and how, their models work.

Acknowledgments
We thank the Air Force Office of Scientific Re-

search for partial support of this work under FA9550-
10-1-0326.

References
1. Abraham, R. and Erwig, M. GoalDebug: A spreadsheet

debugger for end users. ACM ICSE (2007), 251-260.
2. Anderson, J. R. Rules of the Mind. Erlbaum, 1993.
3. Bothell, D. et al., ACT-R Tutorial. Distributed with ACT-

R 6.0 version 1.3 r766. http://act-r.psy.cmu.edu/actr6/.
Retrieved August, 2009.

4. Burnett, M., Cook, C., Pendse, O., Rothermel, G., Sum-
met, J., and Wallace, C. End-user software engineering
with assertions in the spreadsheet paradigm. International
Conference on Software Engineering, 2003, 93-103.

5. Colin, S. and Mariani, L. Run-time verification. In M.
Broy, et al. (eds.) Model-Based Testing of Reactive Sys-
tems, LNCS 3472. Springer-Verlag, 2005, 525-555.

7. Heinath, M., Dzaack, J., Wiesner, A., and Urbas, L.
Simplifying the development and the analysis of
cognitive models. EuroCogSci07, (2007).

8. John, B., Prevas, K., Salvucci, D. and Koedinger, K., Pre-
dictive human performance modeling made easy. ACM
CHI (2004), 455-462.

9. Jones, R. M., Crossman, J. A., Lebiere, C., and Best, B.
J., An abstract language for cognitive modeling. Intl.
Conf. Cognitive Modeling (2006), 160-165.

10. Kieras, D. A guide to GOMS model usability evaluation
using NGOMSL. ftp://ftp.eecs.umich.edu/people/
kieras/GOMS96guide.pdf. Retrieved Sept. 3, 2009.

11. Ko, A., Myers, B. A framework and methodology for
studying the causes of software errors in programming
systems. J. Visual Langs. Computing 16, 1-2 (2005).

12. Ko, A. J. Asking and answering questions about the
causes of software behaviors, Ph.D. thesis, Technical Re-
port CMU-CS-08-122 (2008).

13. Kulesza, T., Wong, W., Stumpf, S., Perona, S., White, R.,
Burnett, M., Oberst, I., Ko, A. Fixing the program my
computer learned: Barriers for end users, challenges for
the machine. ACM IUI (2009), 187–196

14. Ljungblad, S., Holmquist, L., Transfer scenarios: ground-
ing innovation with marginal practices. ACM CHI (2007).

15. Mulholland, P. and Watt, S. Learning by building: A vis-
ual modelling language for psychology students. J. Vis.
Langs. Computing 11, 5 (2000), 481-504.

16. Naish, L., A declarative debugging scheme. J. Functional
and Logic Programming 3, (1997).

17. Norman, D. The Design of Everyday Things. Basic
Books, 1988.

18. Ritter, F., Haynes, S., Cohen, M., Howes, A., John, B.,
Best, B., Lebiere, C., Jones, R., Crossman, J. and Lewis,
R. High-level behavior representation languages revisited.
Conf. Cognitive Modeling (2006), 404-407.

19. St. Amant, R., Freed, A.R. and Ritter, F.E., Specifying
ACT-R models of user interaction with a GOMS lan-
guage. Cognitive Systems Research 6 (2005), 71–88.

20. Segal, J., Some problems of professional end user devel-
opers. IEEE Symp. VLHCC (2007), 111-118.

21. Shneiderman, B. The eyes have it: A task by data type
taxonomy for information visualizations. IEEE VL
(1996), 336-343.

22. Siegler, R. S. and Shrager, J. Strategy choices in addition
and subtraction: How do children know what to do? In C.
Sophian (Ed.), Origins of Cognitive Skills. Hillsdale, NJ:
Erlbaum, (1984), 229-293.

23. Wagner, E. and Lieberman, H. Supporting user hypothe-
ses in problem diagnosis on the web and elsewhere. ACM
IUI (2004), 30-37.

24. Yin, R. Case Study Research: Design and Methods, Sage
Publications, 2003.

25. Zbrodoff, N. J. Why is 9 + 7 harder than 2 + 3? Strength
and interference as explanations of the problem-size ef-
fect. Memory & Cognition, 23:6 (1995), 689-700.

26. Zeigler, B. P., Kim, T. G., and Praehofer, H. Theory of
Modeling and Simulation. 2nd. Academic Press, 2000.

5656

