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Abstract  

Are the abstractions that scientific modelers use to 
build their models in a modeling language the same 
abstractions they use to evaluate the correctness of 
their models? The extent to which such differences ex-
ist seems likely to correspond to additional effort of 
modelers in determining whether their models work as 
intended.  In this paper, we therefore investigate the 
distinction between “programming abstractions” and 
“evaluation abstractions”. As the basis of our investi-
gation, we conducted a case study on cognitive model-
ing. We report modelers’ evaluation abstractions, and 
the lengths they went to in evaluating their models. 
From these results, we derive design implications for 
several categories of persistent, first-class evaluation 
abstractions in future debugging tools for modelers.  

1. Introduction   
Solving a problem can be a very different task from 

evaluating the correctness of your solution, potentially 
requiring a different set of abstractions. However, pro-
gram comprehension and debugging tools are often 
built with the implicit assumption that the abstractions 
programmers use to evaluate a program (evaluation 
abstractions) are the same as the abstractions they use 
to create a program (programming abstractions). 

The central question we investigate in this paper is 
whether distinct evaluation abstractions are an impor-
tant aspect of programmers’ evaluation and debugging 
practices. We are particularly interested in this issue 
for programmers who do not already have evaluation 
tools (test suite management tools, etc.) that they per-
ceive to be well-suited to their needs. As Segal shows, 
one such population is scientific modelers [20]. 

The possibility of modelers building and using 
evaluation abstractions that are different from their 
programming abstractions raises several issues. If there 
are important evaluation abstractions that do not match 
a model’s programming abstractions, what are they? 
What do modelers currently have to do to construct, 
use or reuse such evaluation abstractions? Are there 
implications for evaluation-time tools on how to sup-
port such abstractions?   

In this paper, we shed some light on these issues 
through a case study on six cognitive modeling pro-

jects. We spent a month listening to a group of cogni-
tive modelers at the Air Force Research Labs in Mesa, 
Arizona as they debugged their models and discussed 
them with their colleagues. Our goal was to gather 
cross-cutting commonalities in the ways these cogni-
tive modeling cases work with abstractions in evaluat-
ing their models. 

2. Cognitive Modelers’ World  
In this paper, we use the term modeler to refer to 

anyone who builds a computational model to simulate 
and understand phenomena in the world. One example 
is cognitive modelers modeling cognitive activities in 
the human brain.  

The cognitive modelers in our study used ACT-R 
[2]. This modeling language is a particularly appropri-
ate platform for studying the differences between 
evaluation and programming abstractions, because 
ACT-R models are (even) more unpredictable than tra-
ditional imperative programs.  

Unpredictability is useful for investigating evalua-
tion abstractions because an unpredictable system has a 
large gulf of evaluation [17]—there is a large distance 
between telling the system what to do and determining 
the correctness of its response. For example, modelers 
often do not force production rules to fire in a particu-
lar order, but instead attempt to set rule preconditions 
such that they will become available at appropriate 
times in a task flow. Verifying that this in fact hap-
pened is a non-trivial subtask for modelers. The diffi-
culties modelers have arising from such unpredictabil-
ity provides a useful magnification. This is because, as 
Ljungblad and Holmquist point out, studying the prac-
tices of marginal communities can give insights into 
effects that still apply, but are harder to spot, in a more 
general population [14].  

Modeling in ACT-R features unpredictability in two 
ways. First, model behavior critically depends on the 
firing of production rules, and the storage and retrieval 
of data structures called chunks. The selection and tim-
ing of both of these ACT-R entities are governed by 
calculations involving many factors, and the results are 
often difficult to predict. Second, because the human 
cognition being modeled is flexible and adaptive, cog-
nitive modelers often write models whose decision-
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making is highly reactive to the environment, rather 
than writing models to carry out fixed plans.  

3. Related Work  
Evaluation abstractions relate to expectations about 

what programs will do. Other researchers have consid-
ered the idea of eliciting information about users’ ex-
pectations for use in debugging. WYSIWYT [4] for 
spreadsheets, Woodstein [23] for web transactions, and 
Declarative Debugging [16] for Prolog support Boo-
lean expectations. That is, they let users flag values as 
right or wrong. (These systems use backward slicing 
through a growing set of these user judgments to nar-
row down possible causes of program errors.) Other 
systems have elicited expectations about correct values 
(either explicitly or in the form of a “Why not?” ques-
tion) but only use them for a single recommendation, 
then discard them: these include the Whyline [12] for 
Java, the ACT-R debugger [3], GoalDebug [1] for 
spreadsheets, and Kulesza et al.’s technique [13] for 
end-user debugging of Bayesian classifiers.  

Beyond Boolean judgments, some systems allow 
more elaborate expectations.  Some programming IDEs 
such as Eclipse and Visual Studio allow users to enter 
arbitrary expressions in a “watch window” to display 
calculated values while debugging. For example a user 
debugging a program involving heights and weights 
could monitor body mass index (weight/height^2), 
even if the source code contained no such calculation.  

More elaborate evaluation abstractions are those 
used for runtime verification, in which complex state-
ments of temporal logic are continuously checked 
against the state of a running program. Colin [5] gives 
examples of runtime verification used to monitor the 
geometric shape of groups of autonomous flying robots 
and the properties of routing protocols. This special-
ized technique is not yet widely used; Colin suggests 
this is because runtime verifiers slow programs down, 
but usability may also be a factor.   

In the domain of modeling, Zeigler [26] defines an 
experimental frame as the set of manipulations and 
measurements that a modeler chooses to adopt as a 
standard of validity. He distinguishes replicative valid-
ity, in which a model mimics a real system, predictive 
validity, in which models match new data they were 
not specifically adjusted for, and structural validity, in 
which models internal parts match the parts of the real-
world system. The modelers we observed were primar-
ily concerned with replicative validity and to some ex-
tent with predictive validity.   

For cognitive modeling specifically, there is ongo-
ing research into abstractions for modelers, but it is 
specifically directed at creating new languages for 
cognitive modelers [18], not at ways of evaluating and 

debugging them. These include HLSR [9], a high-level 
cognitive modeling language; Hank [15], a GUI inter-
face for the SOAR cognitive modeling language; G2A 
[19] and HTAmap [7], both of which translate high 
level task descriptions into ACT-R; and CogTool [8], 
an ACT-R-based visual language for simulating user 
interface interaction. Finally, SimTrA [7] creates 
summary statistics of eye tracking data from cognitive 
models and outputs them into convenient tables in R.  

In contrast to these works, we do not present a new 
tool or language, but rather aim to harvest abstractions 
and expectations directly from the intended population 
in order to make design recommendations for better 
debugging and program comprehension tools.  

4. Case Study Design and Methodology  
Our investigation method was the case study, the 

method of choice for investigating a contemporary set 
of events over which the investigator has little or no 
control [24]. Our study included six cases, each of 
which was a modeling project. Participants were six 
cognitive modelers working on these projects, with ad-
vanced degrees in Psychology, Computer Science, or 
Cognitive Science. These participants were civilian 
scientists with the Air Force Research Laboratories. 
We studied these modelers over the course of a month.  

The elements of interest were evaluation abstrac-
tions. Evaluation abstractions are judgments, inten-
tions, or beliefs about model behavior that, like other 
kinds of abstractions, ignore or hide details, usually to 
capture some kind of commonality among different 
instances. Given this definition, our research questions 
were: 

RQ1: What kinds of evaluation abstractions do 
modelers have? 

RQ2: How do modelers currently create, use, and 
reuse their evaluation abstractions? 

RQ3: What operations do modelers need to be able 
to perform on evaluation abstractions?  

4.1 The Models and Modelers 
The first four cases were the following projects 

(anonymized here):   
VISLANG was Steve’s doctoral thesis work to 

demonstrate the impact of visual scenes on language 
comprehension. It models eye movements when a par-
ticipant listens to a description of an airplane’s location 
while looking for the plane on the screen. VISLANG’s 
source code contained about 64 production rules. It can 
learn more production rules over the course of a run. 

Gary was in charge of PILOT, a large component of 
a project to build a cognitive model that simulates fly-
ing an Unmanned Aerial Vehicle (UAV). Gary’s focus 
at the time of the study was on the question of how 
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PILOT should determine when to check the dashboard 
controls as it flew the plane. PILOT had about 160 
production rules and 30 chunk types. 

John and Ellen were linguists working on 
LANGCOMP, a language comprehension model for a 
UAV pilot. The model interpreted incoming text chat 
from human teammates, and updated the model’s un-
derstanding of what destination, airspeed, and altitude 
the teammates were requesting. LANGCOMP had 
about 540 rules and 360 chunk types. 

The SCANTYPE model (Figure 1) had just been 
handed from Mitch to Matt. It modeled humans per-
forming a simple task: given a symbol, search for it on 
a screen, then press the right key on a keyboard. The 
model had alternate strategies for scanning and typing, 
and learned to use the more efficient strategies over 
time. SCANTYPE had 19 rules at the beginning of the 
study, and by the end, Matt had added 6 more. It had 
four chunk types. 

We added two cases that were exercises from the 
ACT-R tutorials [3]: ZBRODOFF and SIEGLER. 
These cases served as sources of normative modeling 
expectations because they each contained a set of 
stated expectations to guide new modelers into build-
ing a new model or enhance an existing model. 
SIEGLER predicted the distribution of answers 4-year-
olds made [22] when asked to add small integers. 
ZBRODOFF modeled a “letter addition” experiment 
[25]. For example, given “A+4” it should respond with 
“E”, which is four letters later in the alphabet. 

4.2 Data and Coding Procedure 
The data about the models were model source code, 

model runs, model output, and model visualizations. 
The data about the modelers were recordings, notes, 
and transcripts from two presentations by modelers de-

scribing their work to other cognitive modelers in the 
group; from three working group meetings; from three 
interviews; and from three one-on-one job shadowing 
sessions with modelers in the style of [11].    

Using these data, two researchers working together 
coded transcript samples from each of the projects into 
the evaluation abstractions shown in the next section’s 
tables.  For modeling projects, we coded the first ten 
minutes of each transcript, starting where the modeler 
began concretely discussing a model or behavior. For 
the tutorials, we coded about 200 lines from the “prob-
lem” section of the lesson where a model was de-
scribed with the reader asked to modify it in some way. 

5. Results  
Our first research question was to identify and cate-

gorize the different types of evaluation abstractions in 
the different modeling projects. We categorized them 
as Data Structure Abstractions, describing relation-
ships among data, Time Abstractions describing the 
sequencing, choosing, and grouping of events over 
time, and Statistical Abstractions with descriptive sta-
tistics about model behaviors.  

As Figure 2 shows, modelers used all of these ab-
straction categories in all projects, although the mix of 
categories varied from project to project. The figure 
also shows patterns of co-occurrence both within and 
across the categories. 

5.1 Data Structure Evaluation Abstractions  
As we pointed out in the introduction, existing pro-

 
Figure 1: A SCANTYPE task screen as the participants
saw it in the original experiment, as the model sees it (the 
red circle is where ACT-R is attending), and as ACT-R’s
visual location buffer sees it. 

       
Figure 2: (Left:) Percentage of evaluation abstractions in 
projects’ transcripts. Dark=Data; medium=Time; 
light=Statistical. (Right:) Co-occurrence of evaluation ab-
stractions within and across categories. Nodes with thick 
borders occurred most frequently, and edge thickness 
indicates co-occurrence frequency. Low co-occurrences 
are not shown.  
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gramming environments are built on the assumption 
that programmers evaluate their programs using their 
program’s data structures. Our modelers did take ad-
vantage of these, e.g., using the debugger to explore 
the chunk data structures that existed in their models. 
However, the difference between the data structures in 
the model and the five data structures (Table 1) model-
ers needed to evaluate was large, requiring translation.   

5.1.1 The types of evaluation data structures 
Table 1 shows the five types of data structure 

evaluation abstractions we found, and Figure 3 shows 
their frequency.  We coded record, lookup (like a hash 
map or lookup table), list, and tree when the structures 
(as described by modelers verbally) suggested resem-
blance to traditional programming data structures of 
these names, and spatial when modelers related data to 
locations in visual space. 

Spatial evaluation abstractions were particularly in-
teresting because they cut across programming abstrac-
tion boundaries, relating things to each other geometri-
cally in visual space. Screen regions, goals, remem-
bered chunks of knowledge, and even production rules 
all potentially related to regions of the visual space. 
Figure 1 shows, at top right, a screen that was shown to 
SCANTYPE, and at bottom, how SCANTYPE per-
ceived it as lists of items with coordinates. However, 
when modelers copy those numbers into other loca-

tions, the debugger does not know the numbers are 
meant by the modeler as coordinate pairs, so modelers 
can view them only as numbers. Thus, as in other lan-
guages, if modelers want to know how items relate 
spatially, they must do the work to graph them.  

5.1.2 The translation problem 
The modelers’ work to translate from model data 

structures to evaluation data structures was hard, but 
the mismatch leading to the translation is necessary. 

First, consider the work to do such translations. For 
example, John wanted to know why one word in 
LANGCOMP’s large lexicon had been retrieved in-
stead of another. In the model, each word in the lexi-
con was stored as an ACT-R chunk. But John treated 
this mass of chunks and the properties of ACT-R’s 
chunk retrieval system as a lookup table, in which the 
choice of chunk to retrieve depended on the contents 
and computed “activation values” of all the chunks that 
were candidates for retrieval. 

Since John did not have evaluation support for this 
table-like lookup perspective on the data, his recourse, 
if he had decided to pursue answering his question, 
would have been to scroll though a long list of chunks 
by name, and click on each individually to view and 
compare their activation levels. 

The mismatch generating such translation work is a 
necessary abstraction mismatch. Because the goal of 
cognitive modeling is to model in terms of cognitive 
theory, evaluation data structures cannot be program-
ming abstractions inside the model unless some cogni-
tive theory proposes them. Instead, these data struc-
tures can exist only in tools outside the model. 

5.1.3 Abstractions of Abstractions 
The examples discussed so far each examined a sin-

gle kind of evaluation abstraction in isolation, but as 
Figure 2 shows, these abstractions were sometimes 
compounded together into more elaborate structures. 

For example, in explaining SCANTYPE’s behavior, 
Matt identified a visual attention shift by composing a 
spatial comparison (between the model’s gaze and a 
landmark he pointed to on the screen), with a time se-
quence abstraction (three events in sequence: a shift, an 
arrival, and a read; explained in Section 5.2): 

Matt: OK, now it's gonna attend a probe, … it's 
gonna shift visual attention there, its visual at-
tention arrives, we're gonna read it. 

These compound abstractions took more work for 
modelers to evaluate because they sometimes required 
extra navigation among different logs and visualiza-
tions. For example whenever the SCANTYPE model 
“saw” a symbol, it logged the creation of a chunk with 
a name like VISUAL-OBJECT1 (in the second 
VISION line in Figure 4, for example). The trace 

 
Figure 3: Counts of Data Structure codes. 

Definition and Example 
Record: Item made up of multiple parts 
e.g., Gary: So there are productions that make this deduc-
tion, and stick it into the situation superchunk. 
Lookup Table:  Items retrieved by key or matching content 
e.g., Ellen: If you say that the third letter is too important, 
then that’s going to mess up what is retrieved. 
List: Info structured as first, next, next, last 
e.g., Matt: In the original task they’re always presented 
1,2,3,4,5,6,7,8,9 in the exact order every time 
Spatial maps: Information tied to visual space 
e.g., Matt: In other words this one [pointing to the screen], 
[...] it would find it very quickly. 
Tree: Hierarchical Knowledge 
e.g., Ellen: I have a feeling that “meet” was retrieved; it just 
didn’t make it into the tree. 
Table 1: Data Structure Evaluation Abstractions, in order of 
frequency.  

5252



 

 

shows when this object was created, but to find out 
where it was, Matt would have had to run the debug-
ger, tell it to skip forward to the appropriate time 
stamp, and open a chunk listing to see the coordinates 
of this object.  

5.2 Time Evaluation Abstractions  
Time clearly mattered to our modelers when they 

evaluated their models. Recall from Figure 2 that all 
six projects used time evaluation abstractions. Time 
constraints were not explicit in any of the models’ 
source code; instead, modelers used time abstractions 
to check high-level patterns as emergent behavior. 
Gary explained why he did not program time explicitly 
into his model during a Q&A after his talk: 

John:… you can have a declarative memory 
chunk that's actually a sequence of goals that al-
lows you to prefer— 

Gary (interrupts): Yeah, but that's the type of 
thing I want the model to learn though, this se-
quence of goals; I don't want to build that in. 

 

5.2.1 Manually sifting the sands of time 
When evaluating even simple sequences of events, 

the time abstractions of interest to our modelers were 
often buried in the logs and visualizations, so modelers 
had to do manual pattern matching work to find them. 
We saw all three of Matt, John, and Ellen reading 
through event logs like the one in Figure 4. The traces 
were very long, and all three modelers used a combina-
tion of scrolling and textual search to find items of in-
terest. Modelers sometimes lost their place, because the 
interesting events were not always close enough to-
gether in the log to see on the screen at the same time.  

These abstract sequences of interest had structure: 
they could not be gleaned by simply filtering one con-
crete event type of the vast number of events that oc-
curred in the model. Gary for example described how 
PILOT changed airspeed: 

Gary: You change airspeed using this particular 
piece of the interface, and you hit enter when the 
value is at the level where you'd like it to be. 

Changing the airspeed, then hitting enter, was a short 
sequence of model actions that Gary 
expected to occur many times 
throughout a model run. For a tool 
to have helped Gary check this, it 
would have needed to support the 
notion of a sequence abstraction 
(defined in Table 2), so that it could 
find events that mattered, but only if 
they occurred in sequence with all 
intervening but unrelated details 
abstracted away.  

5.2.2 Tracking models as they 
strategize 

Although Figure 5 shows that the 
sequence abstraction was the most 
frequently observed, the four strat-
egy-related abstractions (strategy, 
choice, interrupt, and simult), were 
even more common if considered as 
a group. Strategies were activities 
of groups of rules that shared a 

0.216 PROCEDURAL   CLEAR-BUFFER VISUAL-LOCATION 
0.216 PROCEDURAL   CLEAR-BUFFER VISUAL 
0.216 PROCEDURAL   CONFLICT-RESOLUTION 
0.290 VISION       Encoding-complete CHAR-PRIMITIVE2-0-0 NIL 
0.290 VISION       SET-BUFFER-CHUNK VISUAL VISUAL-OBJECT1 
0.290 PROCEDURAL   CONFLICT-RESOLUTION 
0.359 IMAGINAL     SET-BUFFER-CHUNK IMAGINAL PAIR0 
0.359 PROCEDURAL   CONFLICT-RESOLUTION 
0.395 PROCEDURAL   PRODUCTION-FIRED ENCODE-INCORRECT-SYMBOL... 

Figure 4: Part of the event trace from a run of the SCANTYPE model. Col-
umns indicate the simulation clock time, the module responsible for the event, 
and a description of the event.  

 
 

Figure 5: Time evaluation abstractions. 

Definition and Example 
Sequence: B will occur after A 
e.g., Matt: It starts at the far left, it shifts attention to [the] square, [to the] plus, to the 
three, to the U; just left to right serially, until it finds the one it’s looking for.  
Strategy: Joint activity of related rules 
e.g., ZBRODOFF: subjects have to engage in counting.  
Choice: Either A or B will happen 
e.g., John: I have a dual-path capability. I can either retrieve this thing from memory 
[…], assuming I've already created one and I can just retrieve it. Or I can create it. 
Span: Time interval 
e.g., Steve: And then after a short interval there’s an indication of the correct or ac-
tually described reference 
Interruption: Stopping or pausing a strategy 
e.g., Gary: You can build very generic productions. Things like interruption produc-
tions. So if there is a task goal, then change goals, and so you could be in the mid-
dle of a goal and this thing could fire, and you'd cut out in the middle of the goal 
you're working on and you're starting something new. 
Simultaneous: Interleaved strategies 
e.g., Steve: I could have the two separate threads in the model, and then basically 
the contest for resources would take care of all of the interleaving.   

Table 2: Time Evaluation Abstractions in order of frequency 
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common purpose (although the rules were not grouped 
within ACT-R, which simply picks one rule at a time 
and fires it). Some modelers described strategies as 
threads that were “running” when the state of the 
model was such that their productions would happen to 
be triggered. Strategies could be interrupted by other 
rules preempting them, be simultaneous when rule fir-
ings were interleaved, or make choices when one rule 
was selected over another. Modelers confirmed that 
strategies were active by checking whether the rules 
fired. Mitch, for example, added a statement to 
SCANTYPE to print “Continuing search for (feature)” 
every time the “encode-incorrect-symbol-quickly” rule 
fired, so as to gather evidence that the “quick” visual 
scanning strategy was running.  

 

5.2.3 Persistence 
Some evaluation abstractions were so important that 

modelers formalized and kept them as part of their pro-
jects, in the form of tools or documentation. For exam-
ple, Gary had a particularly formal way of describing 
such sequences. He told us that he originally designed 
PILOT using a formal task description language, 
NGOMSL [10]. Unfortunately, Gary’s NGOMSL de-
scription existed only as documentation; the only way 
to check that it was being followed by PILOT was very 
detailed inspection of numerous model runs. 

Steve devised an elaborate solution to the problem 
of evaluating high-level sequence patterns. His model 
generated x,y coordinates of eye movements at exact 
points in time, but Steve wanted to know about certain 
overall patterns of movement, such as looking at or 
near a particular region of interest, then looking away. 
So he created a custom visual finite state automaton 
language for recognizing sequences of eye movements, 
which he could apply to eye tracking data in his model.  

Gary and Steve went to considerable effort to con-
struct these persistent, formal artifacts. This suggests 
that evaluation abstractions exist not just as ad hoc 
evaluations, but may be something modelers want to 
maintain and reuse over multiple runs. 

5.3 Statistical Evaluation Abstractions  
Perhaps the most distinct from traditional program-

ming abstractions were the statistical evaluation ab-
stractions.  These were ways of evaluating model per-
formance in terms of aggregation, trend, or fit to hu-
man data (Table 3 and Figure 6). Coded transcripts for 
all except one of the projects were at least 20% about 
statistics. 

Unlike the other abstractions, in which modelers 
were able to use existing outputs to perform their 
evaluations (even if doing so this way was often very 
inefficient), evaluating in terms of statistical abstrac-
tions required the modelers to write and turn to other 
software. Specifically, they had to write Lisp code to 
collect numeric data and either process it in Lisp or ex-
port it to external files to process with other software. 

For example Matt talked about how the 
SCANTYPE model worked in terms of trends:  

Matt: I think [Mitch]'s hypothesis was that peo-
ple get more familiar with what they're searching 
for and how to respond with the keyboard.  

Matt was referring to code Mitch had written to 
count executions of quick and slow versions of each 
searching and keyboarding strategy, in order to graph 
the shifting proportions of these events over time. The 
decrease of one line and increase in the other was how 
he determined that the model successfully modeled a 
trend from one strategic choice to another over time. 

Compared to the other types of evaluation abstrac-
tions, statistical evaluation abstractions seemed to exist 
in later phases of model development. We observed 
modelers discussing them in their presentations more 
often than when they were working directly with the 
models. Our interpretation is that modelers wanted to 
evaluate in terms of individual data structures and time 
behaviors before trusting their models enough to 
evaluate in terms of aggregates, trends, and fit. 

This interpretation is supported by how 
models’ sizes related to the use of statistical 
abstractions. The smallest projects 
(ZBRODOFF, SIEGLER, and SCANTYPE) 
talked about statistics most often, perhaps be-
cause their smaller size meant they simply 
had less data structure and sequence detail to 
evaluate. At the other end of the size spec-
trum, the largest project, LANGCOMP, 
talked very little about statistics.  (Refer back 
to Figure 2 for project-by-project use of the 

Definition and Example 
Aggregate comparison: Maxima, averages, deviations, count, frequency 
Matt: So it has to search through on average half the symbols.  
Matt: So 12 productions are going to fire before you can find some reward. 
Fit/Validation: Comparison with human data 
Gary: The number of clicks is almost identical between average human 
behavior and average model behavior. 
Trend: Change over time 
Steve: The only difference is that they’re starting to respond more rapidly. 

Table 3: Statistical Evaluation Abstractions in order of frequency 

 
Figure 6: Counts of Statistics Evaluation Abstractions 
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different abstractions.) 
Statistical evaluation abstractions were built on 

other evaluation abstractions. For example, the caption 
in Figure 7 details how Steve interrelated different 
evaluation abstraction types in VISLANG. A count of 
eye movement events was an aggregation evaluation 
abstraction, and their trend line from trial to trial 
amounts to a trend abstraction of that aggregation. 
Figure 2 shows that statistical evaluation abstractions 
were also linked to the time and data abstractions re-
cord, span, spatial, and strategy.  

6. Implications for Design  
As our results show, modelers used numerous 

evaluation abstractions that were often not the same as 
their programming abstractions. Further, they ex-
pended hours of effort to evaluate in terms of these 
evaluation abstractions. The complexity and pervasive 
use modelers made of these abstractions suggest a need 
for new powerful but low-overhead scripting capabili-
ties within debuggers.   

As one example illustrating this need, in ACT-R's 
Lisp environment, programmers can code ad-hoc 
analysis functions from scratch. However, although a 
few of our modelers used this device, they did not all 
have the expertise for this, and it still left many of their 
evaluation needs unmet.  

If a debugging tool were to support such a language, 
what should it enable modelers to do? The evaluation 
abstractions we observed shared a common set of op-
erations that modelers attempted to perform on them 
(Table 4). These operations correspond fairly well to 
the kinds of operations advocated for abstractions in 
other settings (e.g., Shneiderman’s proposals for in-

formation visualization research [21]), which suggests 
that modelers’ evaluation maneuvers are consistent 
with other situations in which full-fledged support for 
abstractions is accepted as being desirable. 

Compare: Modelers went to great lengths to com-
pare evaluation abstractions, both within and between 
models. They did so by searching manually through 
traces and visualizations looking for expected patterns 
of events, by using “diff” tools for regression testing, 
and by using statistical packages to compare data for 
validation. Steve’s automata language from Section 
5.2.3 gives one possible direction for future support of 
comparing evaluation abstractions 

Visualize and Navigate: Modelers created visualiza-
tions of abstractions in every presentation they gave, 
especially statistical abstractions. In debugging, mod-
elers often used them to spot, and sometimes compare, 
phenomena that were unforeseen, too costly, or too in-
formal to check more precisely. The modelers incurred 
high costs from attempting to navigate among visuali-
zations and the abstractions themselves.  

Compose and Filter: Modelers composed evaluation 
abstractions from combinations of other evaluation ab-
stractions and programming abstractions. Conversely, 
modelers sometimes filtered to exclude irrelevant ma-
terial. When their programming abstractions were not 
good matches for the modelers’ desired composition 
and filtering, it became costly for modelers to check 
their expectations. 

Persist: Persistence was a prerequisite of the regres-
sion testing modelers did, but modelers also repeatedly 
looked for the same type of information in ad hoc 
evaluations. The regularity with which they did so 
suggests that their evaluation practices were integral 
parts of their modeling projects.  

These operations suggest a base set of functionality 
for designers to support when creating debugging or 

Compare: Comparing evaluation abstractions within 
models, between models, and/or to their own expec-
tations. 
Visualize: Viewing visual patterns within and be-
tween their evaluation abstractions. 
Navigate: Moving between different parts of an 
evaluation abstraction or between parts of different 
evaluation abstractions. 
Compose: Composing evaluation abstractions using 
combinations of other evaluation abstractions and 
programming abstractions. 
Filter: Removing irrelevant details of an evaluation 
abstraction, temporarily or permanently. 
Persist: Saving and reusing the same evaluation ab-
straction repeatedly over multiple runs or multiple 
models. 

Table 4: Operations on evaluation abstractions. 

      
Figure 7: Steve’s VISLANG graph combines evaluation 
abstractions of time (sequence: blue stripes and red 
dashed line are words heard and mouse clicked; span: 
width of stripes), data structure (spatial: colors of trend 
lines indicate screen regions of eye movements), and 
statistics (trend: colored trend lines; aggregation: verti-
cal axis represents frequency of eye visits per region). 
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program comprehension tools for modelers. Without 
such support, modelers expended considerable effort to 
perform these operations manually or with tools they 
had to create themselves. 

7. Conclusion  
We have described a case study involving six cogni-

tive modeling projects, investigating the expectations 
and corresponding abstractions that modelers have 
when they evaluate their models. We discovered a 
richly interconnected network of evaluation abstrac-
tions involving data structures, time sequences, and 
statistical aggregation. We further found that: 
• Evaluation abstractions were varied in form; some 

mimicked common programming abstractions like 
sequences and trees, while others, like strategies 
and spatial layouts, were new.  

• The abstractions were not just ad hoc descriptions 
of modelers’ roving explorations, but patterns of 
persistent interest, as much a part of the modeling 
project as the code itself. 

• Statistical analysis and debugging were separate 
phases of modeling, yet showed deep ties. The data 
on which modelers ran statistics for validation were 
the same entities they used for “up close” compre-
hension and debugging. 
The evidence reported here of mostly unsupported 

evaluation abstractions demonstrates a gap in support 
for evaluation abstractions needed by cognitive model-
ers.  We suspect this gap is not unique to this popula-
tion alone. We therefore hope this line of research will 
inform the development of modeling environments that 
allow a wide range of modelers to keep better tabs on 
whether, and how, their models work. 
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